This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365667 #15 Jul 30 2025 05:05:05 %S A365667 1,2,4,8,14,24,40,64,100,154,232,332,480,680,944,1304,1774,2384,3180, %T A365667 4200,5488,7120,9160,11680,14869,18740,23468,29280,36278,44720,54904, %U A365667 67040,81464,98658,118936,142792,170902,203760,242120,286624,338366,398160,467148 %N A365667 Expansion of Sum_{0<i<j<k<l<m} q^(2*(i+j+k+l+m)-5)/( (1-q^(2*i-1))*(1-q^(2*j-1))*(1-q^(2*k-1))*(1-q^(2*l-1))*(1-q^(2*m-1)) )^2. %H A365667 G. E. Andrews and S. C. F. Rose, <a href="http://arxiv.org/abs/1010.5769">MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms</a>, arXiv:1010.5769 [math.NT], 2010. %F A365667 G.f.: -(1/5) * ( Sum_{k>=5} (-1)^k * k * binomial(k+4,9) * q^(k^2) ) / ( 1 + 2 * Sum_{k>=1} (-q)^(k^2) ). %t A365667 nmax = 80; Drop[CoefficientList[Series[-1/5 * Sum[(-1)^k*k*Binomial[k + 4, 9]*x^(k^2), {k, 5, nmax}]/(1 + 2*Sum[(-x)^(k^2), {k, 1, nmax}]), {x, 0, nmax}], x], 25] (* _Vaclav Kotesovec_, Jul 30 2025 *) %Y A365667 A diagonal of A060047. %Y A365667 Cf. A002131, A002132, A060046, A365666. %Y A365667 Cf. A015128. %K A365667 nonn %O A365667 25,2 %A A365667 _Seiichi Manyama_, Sep 15 2023