A365670 Number of perfect powers k which are not prime powers, and 1 < k < 10^n.
0, 1, 14, 72, 257, 873, 2838, 9085, 28979, 92145, 292832, 930124, 2953569, 9376798, 29760901, 94434276, 299569798, 950072891, 3012393832, 9549260877, 30264906899, 95902117819, 303839485659, 962486295193, 3048497625289, 9654373954803, 30571355398031, 96797106918709
Offset: 1
Keywords
Examples
There are 14 perfect powers less than 1000 which are not prime powers: 6^2, 10^2, 12^2, 14^2, 6^3, 15^2, 18^2, 20^2, 21^2, 22^2, 24^2, 26^2, 28^2, 30^2.
Links
- Plot2, A267574(n)/A089579(n).
Programs
-
Python
from sympy import mobius, integer_nthroot, primepi def A365670(n): return int(sum(mobius(x)*(1-(a:=integer_nthroot(10**n,x)[0]))-primepi(a) for x in range(2,(10**n).bit_length())))-1 if n>1 else n-1 # Chai Wah Wu, Aug 14 2024
-
SageMath
def A365670(n): gen = (p for p in srange(2, 10^n) if p.is_perfect_power() and not p.is_prime_power()) return sum(1 for _ in gen) print([A365670(n) for n in range(1, 7)])
Comments