cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365671 a(n) = denominator(4^n * n! * [x^n] sqrt(x / (e^x - 1))).

This page as a plain text file.
%I A365671 #6 Sep 29 2023 14:24:53
%S A365671 1,1,3,1,5,3,21,3,45,5,11,1,91,35,45,3,17,3,1995,21,3465,165,115,45,
%T A365671 2925,819,189,7,145,5,341,11,1309,119,1,1,9139,247,65,7,2255,495,
%U A365671 148995,3465,108675,2415,1645,7,270725,5525,21879,429,583,33,4389,399,4959
%N A365671 a(n) = denominator(4^n * n! * [x^n] sqrt(x / (e^x - 1))).
%H A365671 Jitender Singh, <a href="http://arxiv.org/abs/1402.0065">On an arithmetic convolution</a>, arXiv:1402.0065 [math.NT], 2014 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Singh/singh8.html">J. Int. Seq. 17 (2014) # 14.6.7</a>.
%p A365671 egf := sqrt(x/(exp(x)-1)): ser := series(egf, x, 64):
%p A365671 seq(denom(4^n*n!*coeff(ser,x,n)), n = 0..56);
%p A365671 # Alternative, using the Singh transformation 'g' from Maple in A126156:
%p A365671 b := n -> 4^n*g(bernoulli, n); seq(denom(b(n)), n = 0..56);
%Y A365671 Cf. A241885 (numerator), A126156.
%K A365671 nonn,frac
%O A365671 0,3
%A A365671 _Peter Luschny_, Sep 29 2023