cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365673 Array A(n, k) read by ascending antidiagonals. Polygonal number weighted generalized Catalan sequences.

This page as a plain text file.
%I A365673 #38 Nov 27 2023 06:22:40
%S A365673 1,1,1,1,1,1,1,1,2,1,1,1,3,4,1,1,1,4,15,8,1,1,1,5,34,105,16,1,1,1,6,
%T A365673 61,496,945,32,1,1,1,7,96,1385,11056,10395,64,1,1,1,8,139,2976,50521,
%U A365673 349504,135135,128,1,1,1,9,190,5473,151416,2702765,14873104,2027025,256,1
%N A365673 Array A(n, k) read by ascending antidiagonals. Polygonal number weighted generalized Catalan sequences.
%C A365673 Using polygonal numbers as weights, a recursion for triangles is defined, whose main diagonals represents a family of sequences, which include, among others, the powers of 2, the double factorial of odd numbers, the reduced tangent numbers, and the Euler numbers.
%C A365673 Apart from the edge cases k = 0 and k = n the recursion is T(n, k) = w(n, k) * T(n, k - 1) + T(n - 1, k). T(n, 0) = 1 and T(n, n) = T(n, n-1) if n > 0.
%C A365673 The weights w(n, k) identical to 1 yield the recursion of the Catalan triangle A009766 (with main diagonal the Catalan numbers). Here the polygonal numbers are used as weights in the form w(n, k) = p(s, n - k + 1), where the parameter s is the number of sides of the polygon and p(s, n) = ((s-2) * n^2 - (s-4) * n) / 2, see A317302.
%H A365673 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>.
%e A365673 Array A(n, k) starts:                            (polygon|diagonal|triangle)
%e A365673 [0] 1, 1, 1,   1,     1,       1,         1, ...  A258837  A000012
%e A365673 [1] 1, 1, 2,   4,     8,      16,        32, ...  A080956  A011782
%e A365673 [2] 1, 1, 3,  15,   105,     945,     10395, ...  A001477  A001147  A001498
%e A365673 [3] 1, 1, 4,  34,   496,   11056,    349504, ...  A000217  A002105  A365674
%e A365673 [4] 1, 1, 5,  61,  1385,   50521,   2702765, ...  A000290  A000364  A060058
%e A365673 [5] 1, 1, 6,  96,  2976,  151416,  11449296, ...  A000326  A126151  A366138
%e A365673 [6] 1, 1, 7, 139,  5473,  357721,  34988647, ...  A000384  A126156  A365672
%e A365673 [7] 1, 1, 8, 190,  9080,  725320,  87067520, ...  A000566  A366150  A366149
%e A365673 [8] 1, 1, 9, 249, 14001, 1322001, 188106489, ...  A000567
%e A365673            A054556                         A366137
%p A365673 poly := (s, n) -> ((s - 2) * n^2 - (s - 4) * n) / 2:
%p A365673 T := proc(s, n, k) option remember; if k = 0 then 1 else if k = n then T(s, n, k-1) else poly(s, n - k + 1) * T(s, n, k - 1) + T(s, n - 1, k) fi fi end:
%p A365673 for n from 0 to 8 do A := (n, k) -> T(n, k, k): seq(A(n, k), k = 0..9) od;
%p A365673 # Alternative, using continued fractions:
%p A365673 A := proc(p, L) local CF, poly, k, m, P, ser;
%p A365673    poly := (s, n) -> ((s - 2)*n^2 - (s - 4)*n)/2;
%p A365673    CF := 1 + x;
%p A365673    for k from 1 to L do
%p A365673        m := L - k + 1;
%p A365673        P := poly(p, m);
%p A365673        CF := 1/(1 - P*x*CF)
%p A365673    od;
%p A365673    ser := series(CF, x, L);
%p A365673    seq(coeff(ser, x, m), m = 0..L-1)
%p A365673 end:
%p A365673 for p from 0 to 8 do lprint(A(p, 8)) od;
%t A365673 poly[s_, n_] := ((s - 2) * n^2 - (s - 4) * n) / 2;
%t A365673 T[s_, n_, k_] := T[s, n, k] = If[k == 0, 1, If[k == n, T[s, n, k - 1], poly[s, n - k + 1] * T[s, n, k - 1] + T[s, n - 1, k]]];
%t A365673 A[n_, k_] := T[n, k, k];
%t A365673 Table[A[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 27 2023, from first Maple program *)
%o A365673 (Python)
%o A365673 from functools import cache
%o A365673 @cache
%o A365673 def T(s, n, k):
%o A365673     if k == 0: return 1
%o A365673     if k == n: return T(s, n, k - 1)
%o A365673     p = (n - k + 1) * ((s - 2) * (n - k + 1) - (s - 4)) // 2
%o A365673     return p * T(s, n, k - 1) + T(s, n - 1, k)
%o A365673 def A(n, k): return T(n, k, k)
%o A365673 for n in range(9): print([A(n, k) for k in range(9)])
%o A365673 (PARI)
%o A365673 A(p, n) = {
%o A365673        my(CF = 1 + x,
%o A365673            poly(s, n) = ((s - 2)*n^2 - (s - 4)*n)/2,
%o A365673            m, P
%o A365673        );
%o A365673        for(k = 1, n,
%o A365673            m = n - k + 1;
%o A365673            P = poly(p, m);
%o A365673            CF = 1/(1 - P*x*CF)
%o A365673         );
%o A365673         Vec(CF + O(x^(n)))
%o A365673 }
%o A365673 for(p = 0, 8, print(A(p, 8)))
%o A365673 \\  _Michel Marcus_ and _Peter Luschny_, Oct 02 2023
%Y A365673 Poly weights: A258837, A080956, A001477, A000217, A000290, A000326, A000384.
%Y A365673 Rows: A000012, A011782, A001147, A002105, A000364, A126151, A126156, A366150.
%Y A365673 Triangles: A001498, A365674, A060058, A366138, A365672, A366149.
%Y A365673 Cf. A009766, A366137 (central diagonal), A317302 (table of polygonal numbers).
%Y A365673 Cf. A112934, A303943, A305532, A305533.
%K A365673 nonn,tabl
%O A365673 0,9
%A A365673 _Peter Luschny_, Sep 30 2023