cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365679 a(n) is the number of exterior top arches (no covering arch) for semi-meanders in generation n+1 that are generated by semi-meanders with n top arches and floor((n+2)/2) exterior top arches using the exterior arch splitting algorithm.

This page as a plain text file.
%I A365679 #22 Jul 28 2024 09:20:00
%S A365679 4,10,14,32,40,88,104,224,256,544,608,1280,1408,2944,3200,6656,7168,
%T A365679 14848,15872,32768,34816,71680,75776,155648,163840,335872,352256,
%U A365679 720896,753664,1540096,1605632,3276800,3407872,6946816,7208960,14680064
%N A365679 a(n) is the number of exterior top arches (no covering arch) for semi-meanders in generation n+1 that are generated by semi-meanders with n top arches and floor((n+2)/2) exterior top arches using the exterior arch splitting algorithm.
%C A365679 b(n) = the number of exterior top arches for all semi-meanders with n top arches and floor((n+2)/2) exterior top arches = (floor(n/2)+1) * 2^(floor((n-1)/2)). For n>=2, lim_{n->oo} a(n)/b(n) = 3.
%H A365679 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0, 4, 0, -4).
%F A365679 a(n) = (2*n-floor((n-1)/2)) * 2^floor((n-1)/2).
%e A365679 For n=4, the number of semi-meanders with 4 top arches and 3 exterior top arches is equal to A259689(4,3) = 2:
%e A365679        /\    /\
%e A365679 /\ /\ //\\, //\\ /\ /\ = 6 exterior arches. These 6 arches will generate 6 solutions in the n+1 generation using the exterior arch splitting algorithm.
%e A365679      _____           __                                    __           _____
%e A365679     /   /\\    /\   //\\    _____                _____    //\\   /\    //\   \
%e A365679 /\ //\ //\\\, //\\ ///\\\, //\ /\\ /\ /\, /\ /\ //\ /\\, ///\\\ //\\, ///\\ /\\ /\
%e A365679 These 6 solutions have 14 exterior arches. Therefore a(4) = 14.
%t A365679 a[n_]:=(2*n-Floor[(n-1)/2]) * 2^Floor[(n-1)/2]; Array[a,36,2] (* _Stefano Spezia_, Sep 16 2023 *)
%Y A365679 Cf. A259689.
%K A365679 nonn
%O A365679 2,1
%A A365679 _Roger Ford_, Sep 15 2023
%E A365679 a(30) corrected by _Georg Fischer_, Jun 03 2024