cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365680 The number of exponentially squarefree divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 5, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 6, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2023

Keywords

Comments

First differs from A252505 at n = 32.
The number of divisors of n that are exponentially squarefree numbers (A209061), i.e., numbers having only squarefree exponents in their canonical prime factorization.
The sum of these divisors is A365682(n) and the largest of them is A365683(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Count[Range[e], ?SquareFreeQ] + 1; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = sum(k=1, n, issquarefree(k)) + 1;
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A013928(e+1) + 1.
a(n) <= A000005(n), with equality if and only if n is a biquadratefree number (A046100).