A365685 a(n) is the smallest number k such that k*n is an exponentially squarefree number (A209061).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := Module[{k = e}, While[! SquareFreeQ[k], k++]; p^(k-e)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
s(e) = {my(k = e); while(!issquarefree(k), k++); k - e;}; a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}
Formula
Multiplicative with a(p^e) = p^A081221(e).
a(n) = A365684(n)/n.
a(n) >= 1, with equality if and only if n is an exponentially squarefree number (A209061).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^f(k-1))/p^k) = 1.06562841319..., where f(k) = A081221(k) and f(0) = 0.
Comments