cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365725 G.f. satisfies A(x) = 1 + x^3*A(x)^4*(1 + x*A(x)).

This page as a plain text file.
%I A365725 #17 Sep 24 2024 14:14:14
%S A365725 1,0,0,1,1,0,4,9,5,22,78,91,175,680,1224,1938,6270,14630,24794,63756,
%T A365725 166980,322920,720720,1900080,4125888,8803008,22151360,51778804,
%U A365725 111882100,267682272,645736432,1442390092,3346519020,8094247798,18657762006,42890295734
%N A365725 G.f. satisfies A(x) = 1 + x^3*A(x)^4*(1 + x*A(x)).
%H A365725 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A365725 a(n) = Sum_{k=0..floor(n/3)} binomial(k,n-3*k) * binomial(n+k+1,k) / (n+k+1).
%F A365725 G.f.: (1/x) * Series_Reversion( x*(1 - x^3*(1 + x)) ). - _ Seiichi Manyama_, Sep 24 2024
%o A365725 (PARI) a(n) = sum(k=0, n\3, binomial(k, n-3*k)*binomial(n+k+1, k)/(n+k+1));
%Y A365725 Cf. A308616, A365723, A365724, A365726.
%Y A365725 Cf. A001002, A217358, A365731.
%Y A365725 Cf. A054514.
%K A365725 nonn
%O A365725 0,7
%A A365725 _Seiichi Manyama_, Sep 17 2023