cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365731 G.f. satisfies A(x) = 1 + x^4*A(x)^5*(1 + x*A(x)).

This page as a plain text file.
%I A365731 #15 Sep 24 2024 14:14:09
%S A365731 1,0,0,0,1,1,0,0,5,11,6,0,35,120,136,51,285,1330,2310,1771,3036,14950,
%T A365731 35100,40950,47502,175392,503440,791120,927520,2272424,7037184,
%U A365731 13803405,18643560,33997080,98920536,226318196,359255325,578590155,1445166360,3584815443,6573439928
%N A365731 G.f. satisfies A(x) = 1 + x^4*A(x)^5*(1 + x*A(x)).
%H A365731 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A365731 a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(n+k+1,k) / (n+k+1).
%F A365731 G.f.: (1/x) * Series_Reversion( x*(1 - x^4*(1 + x)) ). - _ Seiichi Manyama_, Sep 24 2024
%o A365731 (PARI) a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(n+k+1, k)/(n+k+1));
%Y A365731 Cf. A365727, A365728, A365729, A365730.
%Y A365731 Cf. A001002, A217358, A365725.
%Y A365731 Cf. A215342.
%K A365731 nonn
%O A365731 0,9
%A A365731 _Seiichi Manyama_, Sep 17 2023