cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365737 Length of the longest subsequence of 1,...,n on which the Euler totient function phi A000010 is nonincreasing.

This page as a plain text file.
%I A365737 #19 Oct 13 2023 11:46:21
%S A365737 1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,
%T A365737 6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,
%U A365737 8,8,8,9,9,9,9,9,9,10,10,10,10,10,10,11
%N A365737 Length of the longest subsequence of 1,...,n on which the Euler totient function phi A000010 is nonincreasing.
%H A365737 Chai Wah Wu, <a href="/A365737/b365737.txt">Table of n, a(n) for n = 1..10000</a>
%H A365737 Paul Pollack, Carl Pomerance and Enrique Treviño, <a href="https://math.dartmouth.edu/~carlp/MonotonePhi.pdf">Sets of monotonicity for Euler's totient function</a>, preprint. See M↓(n).
%H A365737 Paul Pollack, Carl Pomerance and Enrique Treviño, <a href="https://doi.org/10.1007/s11139-012-9386-6">Sets of monotonicity for Euler's totient function</a>, Ramanujan J. 30 (2013), no. 3, 379--398.
%H A365737 Terence Tao, <a href="https://arxiv.org/abs/2309.02325">Monotone non-decreasing sequences of the Euler totient function</a>, arXiv:2309.02325 [math.NT], 2023.
%o A365737 (Python)
%o A365737 from bisect import bisect
%o A365737 from sympy import totient
%o A365737 def A365737(n):
%o A365737     plist, qlist, c = tuple(-totient(i) for i in range(1,n+1)), [0]*(n+1), 0
%o A365737     for i in range(n):
%o A365737         qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i
%o A365737         c = max(c,a)
%o A365737     return c
%Y A365737 Cf. A000010, A000720.
%Y A365737 Cf. A365339, A365398, A365399, A365400, A365474, A061070.
%K A365737 nonn
%O A365737 1,2
%A A365737 _Chai Wah Wu_, Sep 17 2023