This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365738 #12 Oct 13 2023 11:46:25 %S A365738 1,3,12,32,92,292,995,3029,9651,31817 %N A365738 a(n) = A365737(10^n). %H A365738 Paul Pollack, Carl Pomerance and Enrique Treviño, <a href="https://math.dartmouth.edu/~carlp/MonotonePhi.pdf">Sets of monotonicity for Euler's totient function</a>, preprint. See M↓(n). %H A365738 Paul Pollack, Carl Pomerance and Enrique Treviño, <a href="https://doi.org/10.1007/s11139-012-9386-6">Sets of monotonicity for Euler's totient function</a>, Ramanujan J. 30 (2013), no. 3, 379--398. %H A365738 Terence Tao, <a href="https://arxiv.org/abs/2309.02325">Monotone non-decreasing sequences of the Euler totient function</a>, arXiv:2309.02325 [math.NT], 2023. %o A365738 (Python) %o A365738 from bisect import bisect %o A365738 from sympy import totient %o A365738 def A365738(n): %o A365738 k = 10**n %o A365738 plist, qlist, c = tuple(-totient(i) for i in range(1,k+1)), [0]*(k+1), 0 %o A365738 for i in range(k): %o A365738 qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i %o A365738 c = max(c,a) %o A365738 return c %Y A365738 Cf. A000010, A000720. %Y A365738 Cf. A365398, A365399, A365400, A365474, A365737, A365740, A365741, A061070. %K A365738 nonn,hard,more %O A365738 0,2 %A A365738 _Chai Wah Wu_, Sep 17 2023 %E A365738 a(9) from _Chai Wah Wu_, Oct 13 2023