This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365742 #22 Sep 18 2023 14:09:24 %S A365742 1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5, %T A365742 5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, %U A365742 6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10 %N A365742 Length of the largest subset of 1,...,n on which the Euler totient function phi A000010 is constant. %H A365742 Chai Wah Wu, <a href="/A365742/b365742.txt">Table of n, a(n) for n = 1..10000</a> %H A365742 R. C. Baker and G. Harman, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8342.pdf">Shifted primes without large prime factors</a>, Acta Arith. 83 (1998), no. 4, 331-361. %H A365742 Paul Erdős, <a href="https://static.renyi.hu/~p_erdos/1935-08.pdf">On the normal number of prime factors of p - 1 and some related problems concerning Euler’s phi-function</a>, Quart J. Math 6 (1935), 205-213. %H A365742 Paul Pollack, Carl Pomerance and Enrique Treviño, <a href="https://math.dartmouth.edu/~carlp/MonotonePhi.pdf">Sets of monotonicity for Euler's totient function</a>, preprint. See M0(n). %H A365742 Paul Pollack, Carl Pomerance and Enrique Treviño, <a href="https://doi.org/10.1007/s11139-012-9386-6">Sets of monotonicity for Euler's totient function</a>, Ramanujan J. 30 (2013), no. 3, 379--398. %H A365742 Terence Tao, <a href="https://arxiv.org/abs/2309.02325">Monotone non-decreasing sequences of the Euler totient function</a>, arXiv:2309.02325 [math.NT], 2023. %F A365742 Pollack et al. showed that A365737(n)-a(n) > n^0.18 for large n. %o A365742 (Python) %o A365742 from collections import Counter %o A365742 from sympy import totient %o A365742 def A365742(n): return max(Counter(totient(i) for i in range(1,n+1)).values()) %Y A365742 Cf. A000010, A000720. %Y A365742 Cf. A365398, A365399, A365400, A365474, A365737, A365738, A365740, A365741, A061070. %K A365742 nonn %O A365742 1,2 %A A365742 _Chai Wah Wu_, Sep 17 2023