cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365742 Length of the largest subset of 1,...,n on which the Euler totient function phi A000010 is constant.

This page as a plain text file.
%I A365742 #22 Sep 18 2023 14:09:24
%S A365742 1,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,
%T A365742 5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
%U A365742 6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,10,10,10,10
%N A365742 Length of the largest subset of 1,...,n on which the Euler totient function phi A000010 is constant.
%H A365742 Chai Wah Wu, <a href="/A365742/b365742.txt">Table of n, a(n) for n = 1..10000</a>
%H A365742 R. C. Baker and G. Harman, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8342.pdf">Shifted primes without large prime factors</a>, Acta Arith. 83 (1998), no. 4, 331-361.
%H A365742 Paul Erdős, <a href="https://static.renyi.hu/~p_erdos/1935-08.pdf">On the normal number of prime factors of p - 1 and some related problems concerning Euler’s phi-function</a>, Quart J. Math 6 (1935), 205-213.
%H A365742 Paul Pollack, Carl Pomerance and Enrique Treviño, <a href="https://math.dartmouth.edu/~carlp/MonotonePhi.pdf">Sets of monotonicity for Euler's totient function</a>, preprint. See M0(n).
%H A365742 Paul Pollack, Carl Pomerance and Enrique Treviño, <a href="https://doi.org/10.1007/s11139-012-9386-6">Sets of monotonicity for Euler's totient function</a>, Ramanujan J. 30 (2013), no. 3, 379--398.
%H A365742 Terence Tao, <a href="https://arxiv.org/abs/2309.02325">Monotone non-decreasing sequences of the Euler totient function</a>, arXiv:2309.02325 [math.NT], 2023.
%F A365742 Pollack et al. showed that A365737(n)-a(n) > n^0.18 for large n.
%o A365742 (Python)
%o A365742 from collections import Counter
%o A365742 from sympy import totient
%o A365742 def A365742(n): return max(Counter(totient(i) for i in range(1,n+1)).values())
%Y A365742 Cf. A000010, A000720.
%Y A365742 Cf. A365398, A365399, A365400, A365474, A365737, A365738, A365740, A365741, A061070.
%K A365742 nonn
%O A365742 1,2
%A A365742 _Chai Wah Wu_, Sep 17 2023