This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365748 #18 Oct 18 2023 10:06:21 %S A365748 1,3,10,30,72,247,937,2844,9261,30742 %N A365748 a(n) = A365742(10^n). %H A365748 R. Baker and G. Harman, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8342.pdf">Shifted primes without large prime factors</a>, Acta Arithmetica 83 (1998), pp. 331-361. %H A365748 Paul Pollack, Carl Pomerance, and Enrique Treviño, <a href="https://math.dartmouth.edu/~carlp/MonotonePhi.pdf">Sets of monotonicity for Euler's totient function</a>, preprint. See M0(n). %H A365748 Paul Pollack, Carl Pomerance, and Enrique Treviño, <a href="https://doi.org/10.1007/s11139-012-9386-6">Sets of monotonicity for Euler's totient function</a>, Ramanujan J. 30 (2013), no. 3, 379-398. %H A365748 Terence Tao, <a href="https://arxiv.org/abs/2309.02325">Monotone non-decreasing sequences of the Euler totient function</a>, arXiv:2309.02325 [math.NT], 2023. %F A365748 Baker and Harman showed that a(n) >= 10^(0.7038n) for all large enough n. - _Chai Wah Wu_, Oct 17 2023 %o A365748 (Python) %o A365748 from collections import Counter %o A365748 from sympy import totient %o A365748 def A365748(n): return max(Counter(totient(i) for i in range(1,10**n+1)).values()) %Y A365748 Cf. A000010, A000720. %Y A365748 Cf. A365398, A365399, A365400, A365474, A365737, A365738, A365740, A365741, A365742, A061070. %K A365748 nonn,hard,more %O A365748 0,2 %A A365748 _Chai Wah Wu_, Sep 17 2023