cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365753 Expansion of (1/x) * Series_Reversion( x*(1+x)*(1-x)^5 ).

This page as a plain text file.
%I A365753 #17 Feb 16 2024 09:53:38
%S A365753 1,4,27,220,1984,19064,191325,1981932,21031965,227463808,2498039219,
%T A365753 27782561352,312281382836,3541879743840,40484779373060,
%U A365753 465888833819532,5393215780225983,62761359573224612,733784067570047400,8615217370731224160,101533102164551821896
%N A365753 Expansion of  (1/x) * Series_Reversion( x*(1+x)*(1-x)^5 ).
%H A365753 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A365753 a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(n+k,k) * binomial(6*n-k+4,n-k).
%F A365753 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(5*n-2*k+3,n-2*k). - _Seiichi Manyama_, Jan 18 2024
%F A365753 a(n) = (1/(n+1)) * [x^n] 1/( (1+x) * (1-x)^5 )^(n+1). - _Seiichi Manyama_, Feb 16 2024
%o A365753 (PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n+k, k)*binomial(6*n-k+4, n-k))/(n+1);
%Y A365753 Cf. A063020, A365751, A365752.
%Y A365753 Cf. A365755.
%K A365753 nonn
%O A365753 0,2
%A A365753 _Seiichi Manyama_, Sep 18 2023