cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365782 Expansion of e.g.f. 1 / (3 - 2 * exp(2*x))^(1/4).

This page as a plain text file.
%I A365782 #23 Nov 16 2023 11:51:57
%S A365782 1,1,7,79,1273,26761,694207,21426679,766897873,31228168561,
%T A365782 1425551226007,72103869999679,4002503339419273,241916116809963961,
%U A365782 15814645240322565007,1111830805751346135079,83649120614618202845473,6705916845517938558372961
%N A365782 Expansion of e.g.f. 1 / (3 - 2 * exp(2*x))^(1/4).
%F A365782 a(n) = Sum_{k=0..n} 2^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
%F A365782 a(0) = 1; a(n) = Sum_{k=1..n} 2^k * (2 - 3/2 * k/n) * binomial(n,k) * a(n-k).
%F A365782 a(0) = 1; a(n) = a(n-1) - 3*Sum_{k=1..n-1} (-2)^k * binomial(n-1,k) * a(n-k).
%o A365782 (PARI) a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 2));
%Y A365782 Cf. A276371, A365794.
%K A365782 nonn
%O A365782 0,3
%A A365782 _Seiichi Manyama_, Nov 16 2023