A365785 a(n) = k such that A120944(k) is the squarefree kernel of A126706(n).
1, 1, 2, 1, 3, 1, 2, 6, 4, 1, 2, 7, 1, 3, 8, 5, 10, 1, 4, 12, 2, 14, 6, 8, 15, 1, 3, 9, 2, 7, 1, 3, 19, 13, 8, 20, 14, 22, 4, 10, 24, 1, 5, 25, 8, 12, 16, 27, 2, 1, 28, 14, 18, 30, 11, 6, 8, 15, 34, 5, 1, 3, 22, 2, 36, 23, 7, 38, 1, 39, 3, 4, 41, 19, 27, 43, 8
Offset: 1
Keywords
Examples
Let b(n) = A126706(n), c(n) = A120944(n), and squarefree kernel rad(n) = A007947(n). a(1) = 1 since c(1) = rad(b(1)) = rad(12) = 6. a(2) = 1 since c(1) = rad(b(2)) = rad(18) = 6. a(3) = 2 since c(2) = rad(b(3)) = rad(20) = 10. a(4) = 1 since c(1) = rad(b(4)) = rad(24) = 6. a(5) = 3 since c(3) = rad(b(5)) = rad(28) = 14, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 240; s = Select[Range[12, nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]; t = Select[Range[nn/2], And[SquareFreeQ[#], CompositeQ[#]] &]; Map[FirstPosition[t, Times @@ FactorInteger[#][[All, 1]]][[1]] &, s]