cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365790 a(n) = number of k <= b(n) such that rad(k) | b(n), where rad(n) = A007947(n) and b(n) = A126706(n).

Original entry on oeis.org

8, 10, 8, 11, 8, 14, 11, 9, 8, 15, 12, 9, 16, 11, 26, 8, 10, 18, 9, 10, 14, 28, 11, 32, 10, 20, 13, 8, 15, 11, 21, 14, 10, 8, 36, 10, 33, 31, 12, 12, 27, 23, 10, 11, 41, 12, 8, 31, 18, 24, 11, 38, 8, 11, 8, 14, 44, 12, 11, 11, 25, 16, 36, 19, 33, 8, 14, 11, 26
Offset: 1

Views

Author

Michael De Vlieger, Sep 21 2023

Keywords

Comments

Alternatively, position of A126706(n) in the list R(rad(n)) of k such that rad(k) | n, where rad(n) = A007947(n). Note that rad(b(n)) < b(n) for all n.
Let prime p divide n. The set R(rad(n)) is a list of numbers beginning with the empty product 1 and including all k such that p | k implies p | rad(n). For example, R(6) = A003586. All k in A003586 are such that no prime q coprime to 6 divides k.

Examples

			a(1) = 8 since rad(b(1)) = rad(12) = 6, and in the sequence R(6) = A003586 = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, ...}, 12 is the 8th term.
a(2) = 10 since rad(b(2)) = rad(18) = 6, and 18 is the 10th term in R(6).
a(3) = 8 since rad(b(3)) = rad(20) = 10, and in the sequence R(10) = A003592 = {1, 2, 4, 5, 8, 10, 16, 20, ...}, 20 is the 8th term.
a(4) = 11 since rad(b(4)) = rad(24) = 6, and 24 is the 11th term in R(6).
a(5) = 8 since rad(b(5)) = rad(28) = 14, and in the sequence R(14) = A003591 = {1, 2, 4, 7, 8, 14, 16, 28, ...}, 28 is the 8th term, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 220;
    f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
    t = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
    s = Map[f, t];
    Map[Function[k, Set[r[k], Select[Range[nn], Divisible[k, f[#]] &]]], Union@ s];
    Array[FirstPosition[r[s[[#]]], t[[#]] ][[1]] &, Length[t] ]

Formula

a(n) = A010846(A126706(n)).