This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365827 #6 Sep 21 2023 08:56:36 %S A365827 1,1,1,1,1,1,2,2,3,4,6,7,10,12,16,20,25,30,38,45,55,66,79,93,111,130, %T A365827 153,179,209,242,282,325,375,432,496,568,651,742,846,963,1094,1240, %U A365827 1406,1589,1795,2026,2282,2567,2887,3240,3634,4072,4557,5094,5692,6351 %N A365827 Number of strict integer partitions of n whose length is not 2. %C A365827 Also the number of strict integer partitions of n with no pair of distinct parts summing to n. %F A365827 a(n) = A000009(n) - A004526(n-1) for n > 0. %e A365827 The a(5) = 1 through a(13) = 12 strict partitions (A..D = 10..13): %e A365827 (5) (6) (7) (8) (9) (A) (B) (C) (D) %e A365827 (321) (421) (431) (432) (532) (542) (543) (643) %e A365827 (521) (531) (541) (632) (642) (652) %e A365827 (621) (631) (641) (651) (742) %e A365827 (721) (731) (732) (751) %e A365827 (4321) (821) (741) (832) %e A365827 (5321) (831) (841) %e A365827 (921) (931) %e A365827 (5421) (A21) %e A365827 (6321) (5431) %e A365827 (6421) %e A365827 (7321) %t A365827 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[#]!=2&]],{n,0,30}] %Y A365827 The complement is counted by A140106 shifted left. %Y A365827 Heinz numbers are A005117 \ A006881 = A005117 /\ A100959. %Y A365827 The non-strict version is A058984, complement A004526. %Y A365827 The case not containing n/2 is A365826, non-strict A365825. %Y A365827 A000041 counts integer partitions, strict A000009. %Y A365827 A046663 counts partitions with no submultiset summing to k, strict A365663. %Y A365827 A182616 counts partitions of 2n that do not contain n, strict A365828. %Y A365827 Cf. A008967, A035363, A078408, A365659. %K A365827 nonn %O A365827 0,7 %A A365827 _Gus Wiseman_, Sep 20 2023