cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365828 Number of strict integer partitions of 2n not containing n.

This page as a plain text file.
%I A365828 #7 Sep 21 2023 08:56:31
%S A365828 1,1,2,3,5,8,12,18,27,39,55,78,108,148,201,270,359,475,623,811,1050,
%T A365828 1351,1728,2201,2789,3517,4418,5527,6887,8553,10585,13055,16055,19685,
%U A365828 24065,29343,35685,43287,52387,63253,76200,91605,109897,131575,157231,187539
%N A365828 Number of strict integer partitions of 2n not containing n.
%F A365828 a(n) = A000009(2n) - A000009(n) + 1.
%e A365828 The a(0) = 1 through a(6) = 12 strict partitions:
%e A365828   ()  (2)  (4)    (6)    (8)      (10)       (12)
%e A365828            (3,1)  (4,2)  (5,3)    (6,4)      (7,5)
%e A365828                   (5,1)  (6,2)    (7,3)      (8,4)
%e A365828                          (7,1)    (8,2)      (9,3)
%e A365828                          (5,2,1)  (9,1)      (10,2)
%e A365828                                   (6,3,1)    (11,1)
%e A365828                                   (7,2,1)    (5,4,3)
%e A365828                                   (4,3,2,1)  (7,3,2)
%e A365828                                              (7,4,1)
%e A365828                                              (8,3,1)
%e A365828                                              (9,2,1)
%e A365828                                              (5,4,2,1)
%t A365828 Table[Length[Select[IntegerPartitions[2n],UnsameQ@@#&&FreeQ[#,n]&]],{n,0,30}]
%Y A365828 The complement is counted by A111133.
%Y A365828 For non-strict partitions we have A182616, complement A000041.
%Y A365828 A000009 counts strict integer partitions.
%Y A365828 A046663 counts partitions with no submultiset summing to k, strict A365663.
%Y A365828 A365827 counts strict partitions not of length 2, complement A140106.
%Y A365828 Cf. A008967, A035363, A078408, A079122, A231429, A238628, A344415, A365659.
%K A365828 nonn
%O A365828 0,3
%A A365828 _Gus Wiseman_, Sep 20 2023