This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365829 #11 Oct 07 2023 11:26:27 %S A365829 1,2,3,5,7,11,13,17,19,23,29,30,31,37,41,42,43,47,53,59,61,66,67,70, %T A365829 71,73,78,79,83,89,97,101,102,103,105,107,109,110,113,114,127,130,131, %U A365829 137,138,139,149,151,154,157,163,165,167,170,173,174,179,181,182,186 %N A365829 Squarefree non-semiprimes. %C A365829 First differs from A030059 in having 210. %F A365829 Intersection of A005117 and A100959. %F A365829 Complement of A001358 in A005117. %e A365829 The terms together with their prime indices begin: %e A365829 1: {} 43: {14} 102: {1,2,7} %e A365829 2: {1} 47: {15} 103: {27} %e A365829 3: {2} 53: {16} 105: {2,3,4} %e A365829 5: {3} 59: {17} 107: {28} %e A365829 7: {4} 61: {18} 109: {29} %e A365829 11: {5} 66: {1,2,5} 110: {1,3,5} %e A365829 13: {6} 67: {19} 113: {30} %e A365829 17: {7} 70: {1,3,4} 114: {1,2,8} %e A365829 19: {8} 71: {20} 127: {31} %e A365829 23: {9} 73: {21} 130: {1,3,6} %e A365829 29: {10} 78: {1,2,6} 131: {32} %e A365829 30: {1,2,3} 79: {22} 137: {33} %e A365829 31: {11} 83: {23} 138: {1,2,9} %e A365829 37: {12} 89: {24} 139: {34} %e A365829 41: {13} 97: {25} 149: {35} %e A365829 42: {1,2,4} 101: {26} 151: {36} %t A365829 Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]!=2&] %o A365829 (PARI) isok(k) = my(f=factor(k)); issquarefree(f) && (bigomega(f) != 2); \\ _Michel Marcus_, Oct 07 2023 %Y A365829 First condition alone is A005117 (squarefree). %Y A365829 Second condition alone is A100959 (non-semiprime). %Y A365829 The nonprime case is 1 followed by A350352. %Y A365829 Partitions of this type are counted by A365827, non-strict A058984. %Y A365829 A001358 lists semiprimes, squarefree A006881. %Y A365829 Cf. A000009, A004526, A008967, A078408, A365659. %K A365829 nonn %O A365829 1,2 %A A365829 _Gus Wiseman_, Oct 05 2023