This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365830 #9 Sep 28 2023 22:22:21 %S A365830 3,5,7,9,10,11,13,14,15,17,19,21,22,23,25,26,27,28,29,31,33,34,35,37, %T A365830 38,39,41,43,44,45,46,47,49,50,51,52,53,55,57,58,59,61,62,63,65,66,67, %U A365830 68,69,70,71,73,74,75,76,77,78,79,81,82,83,85,86,87,88,89 %N A365830 Heinz numbers of incomplete integer partitions, meaning not every number from 0 to A056239(n) is the sum of some submultiset. %C A365830 First differs from A325798 in lacking 156. %C A365830 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A365830 The complement (complete partitions) is A325781. %e A365830 The terms together with their prime indices begin: %e A365830 3: {2} %e A365830 5: {3} %e A365830 7: {4} %e A365830 9: {2,2} %e A365830 10: {1,3} %e A365830 11: {5} %e A365830 13: {6} %e A365830 14: {1,4} %e A365830 15: {2,3} %e A365830 17: {7} %e A365830 19: {8} %e A365830 21: {2,4} %e A365830 22: {1,5} %e A365830 23: {9} %e A365830 25: {3,3} %e A365830 26: {1,6} %e A365830 27: {2,2,2} %e A365830 28: {1,1,4} %e A365830 For example, the submultisets of (1,1,2,6) (right column) and their sums (left column) are: %e A365830 0: () %e A365830 1: (1) %e A365830 2: (2) or (11) %e A365830 3: (12) %e A365830 4: (112) %e A365830 6: (6) %e A365830 7: (16) %e A365830 8: (26) or (116) %e A365830 9: (126) %e A365830 10: (1126) %e A365830 But 5 is missing, so 156 is in the sequence. %t A365830 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A365830 nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]]; %t A365830 Select[Range[100],Length[nmz[prix[#]]]>0&] %Y A365830 For prime indices instead of sums we have A080259, complement of A055932. %Y A365830 The complement is A325781, counted by A126796, strict A188431. %Y A365830 Positions of nonzero terms in A325799, complement A304793. %Y A365830 These partitions are counted by A365924, strict A365831. %Y A365830 A056239 adds up prime indices, row sums of A112798. %Y A365830 A276024 counts positive subset-sums of partitions, strict A284640 %Y A365830 A299701 counts distinct subset-sums of prime indices. %Y A365830 A365918 counts distinct non-subset-sums of partitions, strict A365922. %Y A365830 A365923 counts partitions by distinct non-subset-sums, strict A365545. %Y A365830 Cf. A001223, A046663, A073491, A098743, A304792, A365658, A365919. %K A365830 nonn %O A365830 1,1 %A A365830 _Gus Wiseman_, Sep 26 2023