cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365831 Number of incomplete strict integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.

This page as a plain text file.
%I A365831 #6 Sep 30 2023 09:21:44
%S A365831 0,0,1,1,2,3,3,4,6,8,9,11,13,16,21,25,31,36,43,50,59,69,82,96,113,131,
%T A365831 155,179,208,239,276,315,362,414,472,539,614,698,795,902,1023,1158,
%U A365831 1311,1479,1672,1881,2118,2377,2671,2991,3354,3748,4194,4679,5223,5815
%N A365831 Number of incomplete strict integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.
%e A365831 The strict partition (14,5,4,2,1) has no subset summing to 13 so is counted under a(26).
%e A365831 The a(2) = 1 through a(10) = 9 strict partitions:
%e A365831   (2)  (3)  (4)    (5)    (6)    (7)    (8)      (9)      (10)
%e A365831             (3,1)  (3,2)  (4,2)  (4,3)  (5,3)    (5,4)    (6,4)
%e A365831                    (4,1)  (5,1)  (5,2)  (6,2)    (6,3)    (7,3)
%e A365831                                  (6,1)  (7,1)    (7,2)    (8,2)
%e A365831                                         (4,3,1)  (8,1)    (9,1)
%e A365831                                         (5,2,1)  (4,3,2)  (5,3,2)
%e A365831                                                  (5,3,1)  (5,4,1)
%e A365831                                                  (6,2,1)  (6,3,1)
%e A365831                                                           (7,2,1)
%t A365831 nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
%t A365831 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[nmz[#]]>0&]],{n,0,15}]
%Y A365831 For parts instead of sums we have ranks A080259, A055932.
%Y A365831 The strict complement is A188431, non-strict A126796 (ranks A325781).
%Y A365831 Row sums of A365545 without the first column, non-strict A365923.
%Y A365831 The non-strict version is A365924, ranks A365830.
%Y A365831 A000041 counts integer partitions, strict A000009.
%Y A365831 A046663 counts partitions w/o a submultiset summing to k, strict A365663.
%Y A365831 A276024 counts positive subset-sums of partitions, strict A284640.
%Y A365831 A325799 counts non-subset-sums of prime indices.
%Y A365831 A365543 counts partitions with a submultiset summing to k, strict A365661.
%Y A365831 Cf. A006827, A047967, A299701, A304792, A364350, A365658, A365918, A365921.
%K A365831 nonn
%O A365831 0,5
%A A365831 _Gus Wiseman_, Sep 28 2023