This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365831 #6 Sep 30 2023 09:21:44 %S A365831 0,0,1,1,2,3,3,4,6,8,9,11,13,16,21,25,31,36,43,50,59,69,82,96,113,131, %T A365831 155,179,208,239,276,315,362,414,472,539,614,698,795,902,1023,1158, %U A365831 1311,1479,1672,1881,2118,2377,2671,2991,3354,3748,4194,4679,5223,5815 %N A365831 Number of incomplete strict integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset. %e A365831 The strict partition (14,5,4,2,1) has no subset summing to 13 so is counted under a(26). %e A365831 The a(2) = 1 through a(10) = 9 strict partitions: %e A365831 (2) (3) (4) (5) (6) (7) (8) (9) (10) %e A365831 (3,1) (3,2) (4,2) (4,3) (5,3) (5,4) (6,4) %e A365831 (4,1) (5,1) (5,2) (6,2) (6,3) (7,3) %e A365831 (6,1) (7,1) (7,2) (8,2) %e A365831 (4,3,1) (8,1) (9,1) %e A365831 (5,2,1) (4,3,2) (5,3,2) %e A365831 (5,3,1) (5,4,1) %e A365831 (6,2,1) (6,3,1) %e A365831 (7,2,1) %t A365831 nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]]; %t A365831 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[nmz[#]]>0&]],{n,0,15}] %Y A365831 For parts instead of sums we have ranks A080259, A055932. %Y A365831 The strict complement is A188431, non-strict A126796 (ranks A325781). %Y A365831 Row sums of A365545 without the first column, non-strict A365923. %Y A365831 The non-strict version is A365924, ranks A365830. %Y A365831 A000041 counts integer partitions, strict A000009. %Y A365831 A046663 counts partitions w/o a submultiset summing to k, strict A365663. %Y A365831 A276024 counts positive subset-sums of partitions, strict A284640. %Y A365831 A325799 counts non-subset-sums of prime indices. %Y A365831 A365543 counts partitions with a submultiset summing to k, strict A365661. %Y A365831 Cf. A006827, A047967, A299701, A304792, A364350, A365658, A365918, A365921. %K A365831 nonn %O A365831 0,5 %A A365831 _Gus Wiseman_, Sep 28 2023