cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365832 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k distinct sums of nonempty subsets.

This page as a plain text file.
%I A365832 #5 Sep 30 2023 09:22:18
%S A365832 1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,2,0,0,0,1,0,2,0,0,1,0,1,0,3,0,0,
%T A365832 0,1,0,1,0,3,0,0,1,1,0,0,1,0,4,0,0,0,3,0,0,0,1,0,4,0,0,2,2,0,0,1,0,1,
%U A365832 0,5,0,0,0,5,0,0,0,1,0,1,0,5,0,0,2,5,0,0,0,0,2
%N A365832 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k distinct sums of nonempty subsets.
%e A365832 The partition (7,6,1) has sums 1, 6, 7, 8, 13, 14, so is counted under T(14,6).
%e A365832 Triangle begins:
%e A365832   1
%e A365832   0  1
%e A365832   0  1  0
%e A365832   0  1  0  1
%e A365832   0  1  0  1  0
%e A365832   0  1  0  2  0  0
%e A365832   0  1  0  2  0  0  1
%e A365832   0  1  0  3  0  0  0  1
%e A365832   0  1  0  3  0  0  1  1  0
%e A365832   0  1  0  4  0  0  0  3  0  0
%e A365832   0  1  0  4  0  0  2  2  0  0  1
%e A365832   0  1  0  5  0  0  0  5  0  0  0  1
%e A365832   0  1  0  5  0  0  2  5  0  0  0  0  2
%e A365832   0  1  0  6  0  0  0  8  0  0  0  1  0  2
%e A365832   0  1  0  6  0  0  3  7  0  0  0  0  3  1  1
%e A365832   0  1  0  7  0  0  0 12  0  0  0  1  0  4  0  2
%e A365832   0  1  0  7  0  0  3 11  0  0  0  1  3  2  2  1  1
%e A365832   0  1  0  8  0  0  0 16  0  0  0  1  0  7  0  3  0  2
%e A365832   0  1  0  8  0  0  4 15  0  0  0  1  3  3  6  2  0  0  3
%e A365832   0  1  0  9  0  0  0 21  0  0  0  2  0  9  0  7  0  1  0  4
%e A365832   0  1  0  9  0  0  4 20  0  0  1  0  4  8  5  5  0  0  2  0  5
%e A365832 Row n = 14 counts the following partitions (A..E = 10..14):
%e A365832   (E)  .  (D1)  .  .  (761)  (B21)  .  .  .  .  (6521)  (8321)  (7421)
%e A365832           (C2)        (752)  (A31)              (6431)
%e A365832           (B3)        (743)  (941)              (5432)
%e A365832           (A4)               (932)
%e A365832           (95)               (851)
%e A365832           (86)               (842)
%e A365832                              (653)
%t A365832 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,0,15},{k,0,n}]
%Y A365832 Row sums are A000009.
%Y A365832 Rightmost column n = k is A188431, non-strict A126796.
%Y A365832 The one-based weighted row sums are A284640.
%Y A365832 The corresponding rank statistic is A299701.
%Y A365832 The non-strict version is A365658.
%Y A365832 Central column n = 2k in the non-strict case is A365660.
%Y A365832 Reverse-weighted row-sums are A365922, non-strict A276024.
%Y A365832 A000041 counts integer partitions.
%Y A365832 A000124 counts distinct sums of subsets of {1..n}.
%Y A365832 A365543 counts partitions with a submultiset summing to k, strict A365661.
%Y A365832 Cf. A046663, A108917, A122768, A137719, A304792, A364916.
%K A365832 nonn,tabl
%O A365832 0,19
%A A365832 _Gus Wiseman_, Sep 28 2023