This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365832 #5 Sep 30 2023 09:22:18 %S A365832 1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,2,0,0,0,1,0,2,0,0,1,0,1,0,3,0,0, %T A365832 0,1,0,1,0,3,0,0,1,1,0,0,1,0,4,0,0,0,3,0,0,0,1,0,4,0,0,2,2,0,0,1,0,1, %U A365832 0,5,0,0,0,5,0,0,0,1,0,1,0,5,0,0,2,5,0,0,0,0,2 %N A365832 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k distinct sums of nonempty subsets. %e A365832 The partition (7,6,1) has sums 1, 6, 7, 8, 13, 14, so is counted under T(14,6). %e A365832 Triangle begins: %e A365832 1 %e A365832 0 1 %e A365832 0 1 0 %e A365832 0 1 0 1 %e A365832 0 1 0 1 0 %e A365832 0 1 0 2 0 0 %e A365832 0 1 0 2 0 0 1 %e A365832 0 1 0 3 0 0 0 1 %e A365832 0 1 0 3 0 0 1 1 0 %e A365832 0 1 0 4 0 0 0 3 0 0 %e A365832 0 1 0 4 0 0 2 2 0 0 1 %e A365832 0 1 0 5 0 0 0 5 0 0 0 1 %e A365832 0 1 0 5 0 0 2 5 0 0 0 0 2 %e A365832 0 1 0 6 0 0 0 8 0 0 0 1 0 2 %e A365832 0 1 0 6 0 0 3 7 0 0 0 0 3 1 1 %e A365832 0 1 0 7 0 0 0 12 0 0 0 1 0 4 0 2 %e A365832 0 1 0 7 0 0 3 11 0 0 0 1 3 2 2 1 1 %e A365832 0 1 0 8 0 0 0 16 0 0 0 1 0 7 0 3 0 2 %e A365832 0 1 0 8 0 0 4 15 0 0 0 1 3 3 6 2 0 0 3 %e A365832 0 1 0 9 0 0 0 21 0 0 0 2 0 9 0 7 0 1 0 4 %e A365832 0 1 0 9 0 0 4 20 0 0 1 0 4 8 5 5 0 0 2 0 5 %e A365832 Row n = 14 counts the following partitions (A..E = 10..14): %e A365832 (E) . (D1) . . (761) (B21) . . . . (6521) (8321) (7421) %e A365832 (C2) (752) (A31) (6431) %e A365832 (B3) (743) (941) (5432) %e A365832 (A4) (932) %e A365832 (95) (851) %e A365832 (86) (842) %e A365832 (653) %t A365832 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,0,15},{k,0,n}] %Y A365832 Row sums are A000009. %Y A365832 Rightmost column n = k is A188431, non-strict A126796. %Y A365832 The one-based weighted row sums are A284640. %Y A365832 The corresponding rank statistic is A299701. %Y A365832 The non-strict version is A365658. %Y A365832 Central column n = 2k in the non-strict case is A365660. %Y A365832 Reverse-weighted row-sums are A365922, non-strict A276024. %Y A365832 A000041 counts integer partitions. %Y A365832 A000124 counts distinct sums of subsets of {1..n}. %Y A365832 A365543 counts partitions with a submultiset summing to k, strict A365661. %Y A365832 Cf. A046663, A108917, A122768, A137719, A304792, A364916. %K A365832 nonn,tabl %O A365832 0,19 %A A365832 _Gus Wiseman_, Sep 28 2023