cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365849 Triangular numbers that are the product of two distinct prime numbers of the form 4*k + 3.

This page as a plain text file.
%I A365849 #14 Nov 18 2023 13:11:19
%S A365849 21,253,1081,13861,34453,64261,73153,114481,126253,258121,351541,
%T A365849 371953,392941,482653,869221,933661,1034641,1104841,1660753,2077741,
%U A365849 2126953,2434321,2992681,4142881,4212253,4495501,4567753,4862521,5013361,6561253,7459453,8026021
%N A365849 Triangular numbers that are the product of two distinct prime numbers of the form 4*k + 3.
%C A365849 Intersection of A068443 and A016105.
%C A365849 Subsequence of A156592.
%C A365849 Apparently, a(n) == 1 (mod 36) for n >= 2. - _Hugo Pfoertner_, Nov 03 2023
%e A365849 21 = A068443(4) and 21 = A016105(1), so 21 is a term.
%e A365849 253 = A068443(7) and 253 = A016105(18), so 253 is a term.
%t A365849 Select[Accumulate[Range[4500]], (f = FactorInteger[#])[[;; , 2]] == {1, 1} && Mod[f[[;; , 1]], 4] == {3, 3} &] (* _Amiram Eldar_, Oct 11 2023 *)
%o A365849 (Magma) pd:=PrimeDivisors; blum:=func<n|#Divisors(n) eq 4 and #pd(n) eq 2 and pd(n)[1] mod 4 eq 3 and pd(n)[2] mod 4 eq 3>; [n:n in [1..9000000]|IsSquare(8*n+1) and blum(n)];
%Y A365849 Cf. A000217, A001358, A068443, A156592, A016105.
%K A365849 nonn
%O A365849 1,1
%A A365849 _Marius A. Burtea_, Oct 09 2023