A365862 Number of 4-fold rotationally symmetric pentomino tilings of the 5n X 5n square such that no two tiles can be replaced with two pentomominoes in a new configuration.
1, 0, 0, 0, 2, 0, 20, 54, 6464
Offset: 0
Examples
a(4) = 2: ._______________________________________. |_. | ._. | ._|_. |_________|_________| | | | |_| |_| |_. | ._|_. | ._. | ._| .___| | |___| |___| | |_| ._| |_| |_| | |_|_. | | | |_____| ._| | ._| |___| |___| .___| | | |___. |___| |_|_| |_. |_____| |_| |___| |_| ._|_| |_______| ._|___| | |_. |___. | | | |___. |_. | |___|_______| ._|___| |_| | |___| |_| | |_______| | ._| |_______| | | | .___| ._| |_. | .___| | |_|_. |_. ._| | |_| |___| |_| | |_|_. | |_. ._|_. |_| | |_| |_. |___. | |___| | |_| |_| ._|_| | | | .___|___| |_| | .___|___| | ._| .___| | |_| ._____| |___|_|_____. | |_| |_|_. | | | |_|_. |_. | ._____| ._|_|___| .___| |_| |___. |_. |_|_|_. |_. |___. ._|_| |___| | | ._|_| |_|_. ._|_. |_| | |_| ._|___. | | | |___. | ._| |_. |_| ._| | ._|_. ._|_| | |___| |_| | |_| | |___| | |_| ._| |_. | | | .___|___|_____|___|_. |___| | |_| | |_| |_|_________|_________|___|___|_____|___| (*2)
Links
- Jamie Tucker-Foltz, Locked Polyomino Tilings, arXiv:2307.15996 [math.CO], 2023.
- Jamie Tucker-Foltz, GitHub repository with Python code and pictures of all tilings.
- Wikipedia, Pentomino.
Extensions
a(8) from Jamie Tucker-Foltz, Oct 30 2023
Comments