This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365876 #22 Oct 05 2023 08:37:35 %S A365876 1,0,1,1,2,1,3,2,4,2,6,2,7,3,5,4,9,3,10,5,7,5,12,5,11,6,10,7,16,4,17, %T A365876 9,11,8,14,7,20,10,13,9,22,7,23,11,13,12,26,9,24,11,18,13,29,10,22,14, %U A365876 20,15,32,9,33,16,20,18,27,11,37,18,25,13,39,13,40,20 %N A365876 a(n) is the number of quadratic equations u*x^2 + v*x + w = 0 with distinct solution sets L != {}, integer coefficients u, v, w and GCD(u, v, w) = 1, where n = abs(u) + abs(v) + abs(w) and the sum of the solutions equals the product of the solutions. %C A365876 According to Vieta's formulas, x_1 + x_2 = -v/u and x_1*x_2 = w/u. So x_1 + x_2 = x_1*x_2 when v = -w. Furthermore, the discriminant must not be negative, i.e., v^2 - 4*u*w = v^2 + 4*u*v >= 0. %H A365876 Wikipedia, <a href="https://en.wikipedia.org/wiki/Quadratic_equation">Quadratic equation</a>. %H A365876 Wikipedia, <a href="https://en.wikipedia.org/wiki/Vieta%27s_formulas">Vieta's formulas</a>. %e A365876 For n = 9 the a(9) = 4 equations are given by (u, v, w) = (7, 1, -1), (5, 2, -2), (1, 4, -4), (-1, 4, -4). %e A365876 Equations multiplied by -1 do not have a different solution set; for example, (-7, -1, 1) has the same solution set as (7, 1, -1). %e A365876 Equations with GCD(u, v, w) != 1 are excluded, because their solution sets are assigned to equations with lower n. For example, (3, 3, -3) is not included here, because its solution set is already assigned to (1, 1, -1). %e A365876 Equations with a double solution are considered to have two equal solutions. For example, (-1, 4, -4) has the two solutions x_1 = x_2 = 2. %p A365876 A365876:= proc(n) local u, v, a, min; u := n; v := 0; a := 0; min := true; while min = true do if u <> 0 and gcd(u, v) = 1 then a := a + 1; end if; u := u - 2; v:=(n-abs(u))/2; if u < -1/9*n then min := false; end if; end do; return a; end proc; seq(A365876(n), n = 1 .. 74); %o A365876 (Python) %o A365876 from math import gcd %o A365876 def A365876(n): %o A365876 if n == 1: return 1 %o A365876 c = 0 %o A365876 for v in range(1,n+1>>1): %o A365876 u = n-(v<<1) %o A365876 if gcd(u,v)==1: %o A365876 v2, u2 = v*v, v*(u<<2) %o A365876 if v2+u2 >= 0: %o A365876 c +=1 %o A365876 if v2-u2 >= 0: %o A365876 c +=1 %o A365876 return c # _Chai Wah Wu_, Oct 04 2023 %Y A365876 Cf. A364384, A364385, A365877 (partial sums), A365892. %K A365876 nonn %O A365876 1,5 %A A365876 _Felix Huber_, Sep 22 2023