A365884 Numbers k such that k and k+1 are both terms of A365883.
27, 188, 459, 620, 675, 836, 1107, 1268, 1323, 1484, 1755, 1916, 1971, 2132, 2403, 2564, 2619, 2780, 3051, 3124, 3212, 3267, 3428, 3699, 3860, 3915, 4076, 4347, 4508, 4563, 4724, 4995, 5156, 5211, 5372, 5643, 5804, 5859, 6020, 6291, 6452, 6507, 6668, 6939, 7100
Offset: 1
Examples
27 = 3^3 is a term since its least prime factor, 3, is equal to its exponent, and also the least prime factor of 28 = 2^2 * 7, 2, is equal to its exponent.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := Equal @@ FactorInteger[n][[1]]; consec[kmax_] := Module[{m = 1, c = Table[False, {2}], s = {}}, Do[c = Join[Rest[c], {q[k]}]; If[And @@ c, AppendTo[s, k - 1]], {k, 1, kmax}]; s]; consec[7200]
-
PARI
lista(kmax) = {my(q1 = 0, q2); for(k = 2, kmax, q2 = #Set(factor(k)[1,]) == 1; if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
Comments