A365887 Numbers k such that k and k+1 are both terms of A365886.
80, 567, 728, 1215, 1376, 1863, 2024, 2511, 2672, 3159, 3320, 3807, 3968, 4455, 4616, 5103, 5264, 5751, 5912, 6399, 6560, 7047, 7208, 7695, 7856, 8343, 8504, 8991, 9152, 9639, 9800, 10287, 10448, 10935, 11096, 11583, 11744, 12231, 12392, 12879, 13040, 13527, 13688
Offset: 1
Examples
80 = 2^4 * 5 is a term since its least prime factor, 2, is smaller than its exponent, 4, and the least prime factor of 81 = 3^4, 3, is also smaller than its exponent, 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := Less @@ FactorInteger[n][[1]]; consec[kmax_] := Module[{m = 1, c = Table[False, {2}], s = {}}, Do[c = Join[Rest[c], {q[k]}]; If[And @@ c, AppendTo[s, k - 1]], {k, 1, kmax}]; s]; consec[14000]
-
PARI
is(n) = {my(f = factor(n)); n > 1 && f[1, 1] < f[1, 2];} lista(kmax) = {my(q1 = 0, q2); for(k = 2, kmax, q2 = is(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
Comments