This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365899 #12 Oct 01 2023 07:26:22 %S A365899 2935,5446,5910,9093,11068,15713,15795,18829,19984,23669,25794,26386, %T A365899 33619,36370,36498,41560,41779,46911,48184,48231,48604,50349,50835, %U A365899 53082,53253,53760,54758,56524,58144,58836,59600,60390,60533,63181,64979,65226,65867,66449 %N A365899 Numbers k such that A073734(k) is neither squarefree nor a prime power. %C A365899 Subset of A073735. %C A365899 A073734(a(n)) = GCD(A064413(a(n)-1), A064413(a(n))) is in A126706. %H A365899 Michael De Vlieger, <a href="/A365899/b365899.txt">Table of n, a(n) for n = 1..10000</a> %H A365899 Michael De Vlieger, <a href="/A365899/a365899.txt">Mathematica code</a> for this sequence, based on Lagarias-Rains-Sloane 2002 paper, pages 4-5. %H A365899 J. C. Lagarias, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0204011">The EKG sequence</a>, Exper. Math. 11 (2002), 437-446; arXiv:math/0204011 [math.NT], 2002. %H A365899 <a href="/index/Ed#EKG">Index entries for sequences related to EKG sequence</a> %e A365899 Table of first terms and how they relate to b(n) = A073735(n) and EKG(n) = A064413(n). %e A365899 n m=a(n) b(m) EKG(m-1) EKG(m) %e A365899 ------------------------------------------- %e A365899 1 2935 20 = 2*2*5 3080 3060 %e A365899 2 5446 20 5740 5660 %e A365899 3 5910 20 6180 6140 %e A365899 4 9093 20 9460 9440 %e A365899 5 11068 12 = 2*2*3 11484 11472 %e A365899 6 15713 52 = 2*2*13 16328 16276 %e A365899 7 15795 12 16368 16356 %e A365899 8 18829 36 = 2*2*3*3 19548 19476 %e A365899 9 19984 63 = 3*3*7 20727 20664 %e A365899 10 23669 116 = 2*2*29 24592 24476 %e A365899 11 25794 56 = 2*2*2*7 26712 26656 %e A365899 12 26386 68 = 2*2*17 27472 27268 %e A365899 ... %e A365899 30 58836 18 = 2*3*3 60786 60778 %e A365899 ... %Y A365899 Cf. A064413, A073734, A073735, A126706. %K A365899 nonn %O A365899 1,1 %A A365899 _Michael De Vlieger_, Sep 28 2023