This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365906 #68 Oct 16 2023 03:34:06 %S A365906 1,4,9,7,16,12,12,12,10,25,19,19,17,17,17,17,15,15,15,15,13,36,28,28, %T A365906 28,24,24,24,24,24,24,24,22,22,22,22,22,22,22,22,22,22,22,20,20,20,20, %U A365906 20,20,20,18,18,18,18,18,16,49,39,39,39,33,33,33,33,33,33 %N A365906 Irregular triangle T(n,k) read by rows, n>=1, k>=1, in which row n lists in nonincreasing order the sum of the b values (described in A365835) of the cells of every free polyomino with n cells. %C A365906 Observation: at least for 1 <= n <= 6 the parity of the terms in row n coincides with the parity of n. If n is odd then every polyomino has an odd number of odd b values, otherwise if n is even then every polyomino has an even number of odd b values. %C A365906 The preceding observation is true for all n, because the b-values count each cell once (it is in the same row/column as itself) and pairs of distinct cells in the same row or column (with no gaps in between) twice (once in each direction). - _Pontus von Brömssen_, Oct 15 2023 %H A365906 Pontus von Brömssen, <a href="/A365906/b365906.txt">Table of n, a(n) for n = 1..6473</a> (first 10 rows) %H A365906 Rodolfo Kurchan, <a href="https://www.puzzlefun.online/problems">Puzzle Fun, Problems, Colored Polyominoes</a> %H A365906 George Sicherman, <a href="http://static.wixstatic.com/media/799cc4_0fb1e118c87c4e84903509920c43f42e~mv2.png">A colored version of the free pentominoes</a> %F A365906 For n >= 1; T(n,1) = n^2. %F A365906 For n >= 3; T(n,2) = (n - 1)^2 + 3 = A117950(n-1). %F A365906 For n >= 4; T(n,3) = (n - 1)^2 + 3 = A117950(n-1). %e A365906 Triangle begins: %e A365906 1; %e A365906 4; %e A365906 9, 7; %e A365906 16, 12, 12, 12, 10; %e A365906 25, 19, 19, 17, 17, 17, 17, 15, 15, 15, 15, 13; %e A365906 ... %e A365906 For n = 5 the twelve pentominoes and the b values of their cells are as shown below: %e A365906 . %e A365906 I L Y P T V X %e A365906 . _ _ _ _ _ _ _ _ _ _ %e A365906 |_| |_| _|_| |_|_| |_|_|_| |_| _|_|_ %e A365906 |_| |_| |_|_| |_|_| |_| |_|_ _ |_|_|_| %e A365906 |_| |_|_ |_| |_| |_| |_|_|_| |_| %e A365906 |_| |_|_| |_| %e A365906 |_| %e A365906 5 4 4 4 3 3 5 3 3 3 %e A365906 5 4 2 5 4 3 3 3 3 5 3 %e A365906 5 4 4 3 3 5 3 3 3 %e A365906 5 5 2 4 %e A365906 5 %e A365906 . %e A365906 F N U Z W %e A365906 . _ _ _ _ _ _ _ _ %e A365906 _|_|_| _|_| |_|_|_| |_|_| |_|_ %e A365906 |_|_| |_|_| |_|_|_| |_|_ |_|_|_ %e A365906 |_| |_| |_|_| |_|_| %e A365906 |_| %e A365906 4 2 2 2 2 2 4 2 %e A365906 2 4 4 3 4 3 4 3 3 3 %e A365906 3 3 4 2 3 2 %e A365906 3 %e A365906 . %e A365906 T(5,k) is the sum of the b values of all cells of the k-th pentomino from the diagram. %e A365906 For further information see also A365835. %Y A365906 Row lengths give A000105, n >= 1. %Y A365906 Right border gives A016777. %Y A365906 Row sums give A365835. %Y A365906 Cf. A000035, A000290, A002378, A057766, A117950, A279019, A365860. %K A365906 nonn,tabf %O A365906 1,2 %A A365906 _Rodolfo Kurchan_ and _Omar E. Pol_, Sep 22 2023 %E A365906 Terms a(61) and beyond from _Pontus von Brömssen_, Oct 15 2023