cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365911 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(4*k+3) / (4*k+3)! ).

This page as a plain text file.
%I A365911 #22 Sep 23 2023 08:51:36
%S A365911 1,0,0,1,0,0,20,1,0,1680,240,1,369600,102960,4160,168168001,76876800,
%T A365911 7743840,137225153280,93117024001,17091609600,182510023324320,
%U A365911 172080261401600,49615854288001,369403226582016000,461748751736204400,191552892427653120
%N A365911 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(4*k+3) / (4*k+3)! ).
%H A365911 Seiichi Manyama, <a href="/A365911/b365911.txt">Table of n, a(n) for n = 0..498</a>
%F A365911 a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/4)} binomial(n,4*k+3) * a(n-4*k-3).
%F A365911 E.g.f.: 1 / ( 1 - (sinh(x) - sin(x))/2 ).
%o A365911 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(sinh(x)-sin(x))/2)))
%Y A365911 Cf. A102233, A332258, A365912.
%Y A365911 Cf. A352429, A365917.
%Y A365911 Cf. A307978.
%K A365911 nonn,easy
%O A365911 0,7
%A A365911 _Seiichi Manyama_, Sep 22 2023