cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365912 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+3) / (5*k+3)! ).

This page as a plain text file.
%I A365912 #16 Sep 23 2023 08:51:45
%S A365912 1,0,0,1,0,0,20,0,1,1680,0,330,369600,1,180180,168168000,13990,
%T A365912 163363200,137225088001,39041010,232792560000,182509367449640,
%U A365912 118574979600,494730748512001,369398970833730090,451334037000000,1500683270499930350,1080492079984609149000
%N A365912 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+3) / (5*k+3)! ).
%H A365912 Seiichi Manyama, <a href="/A365912/b365912.txt">Table of n, a(n) for n = 0..498</a>
%F A365912 a(0) = 1; a(n) = Sum_{k=0..floor((n-3)/5)} binomial(n,5*k+3) * a(n-5*k-3).
%o A365912 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+3)/(5*k+3)!))))
%Y A365912 Cf. A102233, A332258, A365911.
%K A365912 nonn,easy
%O A365912 0,7
%A A365912 _Seiichi Manyama_, Sep 22 2023