cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365915 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(2*k+5) / (2*k+5)! ).

This page as a plain text file.
%I A365915 #23 Sep 23 2023 08:51:55
%S A365915 1,0,0,0,0,1,0,1,0,1,252,1,1584,1,7436,756757,31616,14702689,129404,
%T A365915 189559657,11733266992,2062481617,516242875084,20611819933,
%U A365915 14135172627712,623557476714481,312148517693820,52096977907924561,6121122865591920
%N A365915 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(2*k+5) / (2*k+5)! ).
%H A365915 Seiichi Manyama, <a href="/A365915/b365915.txt">Table of n, a(n) for n = 0..529</a>
%F A365915 a(0) = 1; a(n) = Sum_{k=0..floor((n-5)/2)} binomial(n,2*k+5) * a(n-2*k-5).
%F A365915 E.g.f.: 1 / ( 1 + x + x^3/6 - sinh(x) ).
%o A365915 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x+x^3/6-sinh(x))))
%Y A365915 Cf. A245790, A365916, A365917.
%Y A365915 Cf. A006154, A332258.
%Y A365915 Cf. A365896.
%K A365915 nonn,easy
%O A365915 0,11
%A A365915 _Seiichi Manyama_, Sep 23 2023