This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365918 #17 Sep 26 2023 01:58:56 %S A365918 0,1,2,6,8,19,24,46,60,101,124,206,250,378,462,684,812,1165,1380,1927, %T A365918 2268,3108,3606,4862,5648,7474,8576,11307,12886,16652,19050,24420, %U A365918 27584,35225,39604,49920,56370,70540,78608,98419,109666,135212,151176,185875,205308 %N A365918 Number of distinct non-subset-sums of integer partitions of n. %C A365918 For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k. %F A365918 a(n) = (n+1)*A000041(n) - A304792(n). %e A365918 The a(6) = 19 ways, showing each partition and its non-subset-sums: %e A365918 (6): 1,2,3,4,5 %e A365918 (51): 2,3,4 %e A365918 (42): 1,3,5 %e A365918 (411): 3 %e A365918 (33): 1,2,4,5 %e A365918 (321): %e A365918 (3111): %e A365918 (222): 1,3,5 %e A365918 (2211): %e A365918 (21111): %e A365918 (111111): %t A365918 Table[Total[Length[Complement[Range[n],Total/@Subsets[#]]]&/@IntegerPartitions[n]],{n,10}] %o A365918 (Python) %o A365918 # uses A304792_T %o A365918 from sympy import npartitions %o A365918 def A365918(n): return (n+1)*npartitions(n)-A304792_T(n,n,(0,),1) # _Chai Wah Wu_, Sep 25 2023 %Y A365918 Row sums of A046663, strict A365663. %Y A365918 The zero-full complement (subset-sums) is A304792. %Y A365918 The strict case is A365922. %Y A365918 Weighted row-sums of A365923, rank statistic A325799, complement A365658. %Y A365918 A000041 counts integer partitions, strict A000009. %Y A365918 A126796 counts complete partitions, ranks A325781, strict A188431. %Y A365918 A365543 counts partitions with a submultiset summing to k, strict A365661. %Y A365918 A365924 counts incomplete partitions, ranks A365830, strict A365831. %Y A365918 Cf. A006827, A122768, A364272, A364350, A364839, A365919, A365921. %K A365918 nonn %O A365918 1,3 %A A365918 _Gus Wiseman_, Sep 23 2023 %E A365918 a(21)-a(45) from _Chai Wah Wu_, Sep 25 2023