This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365921 #11 Dec 13 2024 09:41:56 %S A365921 1,1,0,1,1,0,2,0,1,0,2,0,1,2,0,4,0,0,1,2,0,5,0,0,1,1,4,0,8,0,0,0,1,2, %T A365921 4,0,10,0,0,0,2,1,2,7,0,16,0,0,0,0,2,1,3,8,0,20,0,0,0,0,2,2,2,4,12,0, %U A365921 31,0,0,0,0,0,2,2,2,5,14,0 %N A365921 Triangle read by rows where T(n,k) is the number of integer partitions y of n such that k is the greatest member of {0..n} that is not the sum of any nonempty submultiset of y. %H A365921 Steven R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. %e A365921 The partition (6,2,1,1) has subset-sums 0, 1, 2, 3, 4, 6, 7, 8, 9, 10 so is counted under T(10,5). %e A365921 Triangle begins: %e A365921 1 %e A365921 1 0 %e A365921 1 1 0 %e A365921 2 0 1 0 %e A365921 2 0 1 2 0 %e A365921 4 0 0 1 2 0 %e A365921 5 0 0 1 1 4 0 %e A365921 8 0 0 0 1 2 4 0 %e A365921 10 0 0 0 2 1 2 7 0 %e A365921 16 0 0 0 0 2 1 3 8 0 %e A365921 20 0 0 0 0 2 2 2 4 12 0 %e A365921 31 0 0 0 0 0 2 2 2 5 14 0 %e A365921 39 0 0 0 0 0 4 2 2 3 6 21 0 %e A365921 55 0 0 0 0 0 0 4 2 4 3 9 24 0 %e A365921 71 0 0 0 0 0 0 5 4 2 4 5 10 34 0 %e A365921 Row n = 8 counts the following partitions: %e A365921 (4211) . . . (521) (611) (71) (8) . %e A365921 (41111) (5111) (431) (62) %e A365921 (3311) (53) %e A365921 (3221) (44) %e A365921 (32111) (422) %e A365921 (311111) (332) %e A365921 (22211) (2222) %e A365921 (221111) %e A365921 (2111111) %e A365921 (11111111) %t A365921 nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]]; %t A365921 Table[Length[Select[IntegerPartitions[n],Max@@Prepend[nmz[#],0]==k&]],{n,0,10},{k,0,n}] %Y A365921 Row sums are A000041. %Y A365921 Diagonal k = n-1 is A002865. %Y A365921 Column k = 1 is A126796 (complete partitions), ranks A325781. %Y A365921 Central diagonal n = 2k is A126796 also. %Y A365921 For parts instead of sums we have A339737, rank stat A339662, min A257993. %Y A365921 This is the triangle for the rank statistic A365920. %Y A365921 Latter row sums are A365924 (incomplete partitions), ranks A365830. %Y A365921 Column sums are A366127. %Y A365921 A055932 lists numbers whose prime indices cover an initial interval. %Y A365921 A056239 adds up prime indices, row sums of A112798. %Y A365921 A073491 lists numbers with gap-free prime indices. %Y A365921 A238709/A238710 count partitions by least/greatest difference. %Y A365921 A342050/A342051 have prime indices with odd/even least gap. %Y A365921 A366128 gives the least non-subset-sum of prime indices. %Y A365921 Cf. A001522, A079068, A098743, A264401, A286469 or A286470, A339886. %K A365921 nonn,tabl %O A365921 0,7 %A A365921 _Gus Wiseman_, Sep 30 2023