cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365923 Triangle read by rows where T(n,k) is the number of integer partitions of n with exactly k distinct non-subset-sums.

This page as a plain text file.
%I A365923 #7 Sep 25 2023 12:56:02
%S A365923 1,1,0,1,1,0,2,0,1,0,2,1,1,1,0,4,0,2,0,1,0,5,1,0,3,1,1,0,8,0,3,0,3,0,
%T A365923 1,0,10,2,1,2,2,3,1,1,0,16,0,5,0,3,0,5,0,1,0,20,2,2,4,2,6,0,4,1,1,0,
%U A365923 31,0,6,0,8,0,5,0,5,0,1,0,39,4,4,4,1,6,6,3,2,6,1,1,0
%N A365923 Triangle read by rows where T(n,k) is the number of integer partitions of n with exactly k distinct non-subset-sums.
%C A365923 For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.
%e A365923 The partition (4,2) has subset-sums {2,4,6} and non-subset-sums {1,3,5} so is counted under T(6,3).
%e A365923 Triangle begins:
%e A365923    1
%e A365923    1  0
%e A365923    1  1  0
%e A365923    2  0  1  0
%e A365923    2  1  1  1  0
%e A365923    4  0  2  0  1  0
%e A365923    5  1  0  3  1  1  0
%e A365923    8  0  3  0  3  0  1  0
%e A365923   10  2  1  2  2  3  1  1  0
%e A365923   16  0  5  0  3  0  5  0  1  0
%e A365923   20  2  2  4  2  6  0  4  1  1  0
%e A365923   31  0  6  0  8  0  5  0  5  0  1  0
%e A365923   39  4  4  4  1  6  6  3  2  6  1  1  0
%e A365923   55  0 13  0  8  0 12  0  6  0  6  0  1  0
%e A365923   71  5  8  7  3  5  3 16  3  6  0  6  1  1  0
%e A365923 Row n = 6 counts the following partitions:
%e A365923   (321)     (411)  .  (51)   (33)  (6)  .
%e A365923   (3111)              (42)
%e A365923   (2211)              (222)
%e A365923   (21111)
%e A365923   (111111)
%t A365923 Table[Length[Select[IntegerPartitions[n], Length[Complement[Range[n], Total/@Subsets[#]]]==k&]], {n,0,10}, {k,0,n}]
%Y A365923 Row sums are A000041.
%Y A365923 The rank statistic counted by this triangle is A325799.
%Y A365923 The strict case is A365545, weighted row sums A365922.
%Y A365923 The complement (positive subset-sum) is A365658.
%Y A365923 Weighted row sums are A365918, for positive subset-sums A304792.
%Y A365923 A046663 counts partitions w/o a submultiset summing to k, strict A365663.
%Y A365923 A126796 counts complete partitions, ranks A325781, strict A188431.
%Y A365923 A364350 counts combination-free strict partitions, complement A364839.
%Y A365923 A365543 counts partitions with a submultiset summing to k, strict A365661.
%Y A365923 A365924 counts incomplete partitions, ranks A365830, strict A365831.
%Y A365923 Cf. A000009, A006827, A122768, A364272, A365919, A365921.
%K A365923 nonn,tabl
%O A365923 0,7
%A A365923 _Gus Wiseman_, Sep 24 2023