A365924 Number of incomplete integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.
0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 25, 38, 46, 64, 76, 106, 124, 167, 199, 261, 309, 402, 471, 604, 714, 898, 1053, 1323, 1542, 1911, 2237, 2745, 3201, 3913, 4536, 5506, 6402, 7706, 8918, 10719, 12364, 14760, 17045, 20234, 23296, 27600, 31678, 37365, 42910, 50371, 57695, 67628, 77300, 90242, 103131, 119997
Offset: 0
Keywords
Examples
The a(0) = 0 through a(8) = 12 partitions: . . (2) (3) (4) (5) (6) (7) (8) (2,2) (3,2) (3,3) (4,3) (4,4) (3,1) (4,1) (4,2) (5,2) (5,3) (5,1) (6,1) (6,2) (2,2,2) (3,2,2) (7,1) (4,1,1) (3,3,1) (3,3,2) (5,1,1) (4,2,2) (4,3,1) (5,2,1) (6,1,1) (2,2,2,2) (5,1,1,1)
Links
- Joerg Arndt, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]]; Table[Length[Select[IntegerPartitions[n],Length[nmz[#]]>0&]],{n,0,15}]
Comments