This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365925 #10 Nov 15 2023 08:30:08 %S A365925 1,2,2,6,6,10,17,22,29,42,59,74,102,130,171,226,281,356,454,566,699, %T A365925 896,1080,1342,1637,2006,2413,2962,3548,4286,5114,6148,7272,8738, %U A365925 10268,12224,14387,16996,19863,23450,27257,31984,37187,43364,50173,58428,67322 %N A365925 Number of subset-sums of strict integer partitions of n. %C A365925 This is the "not necessarily positive" version, cf. A284640. %e A365925 The a(6) = 17 ways, showing each strict partition and its subset-sums: %e A365925 (6): 0,6 %e A365925 (51): 0,1,5,6 %e A365925 (42): 0,2,4,6 %e A365925 (321): 0,1,2,3,4,5,6 %t A365925 Table[Total[Length[Union[Total/@Subsets[#]]]& /@ Select[IntegerPartitions[n], UnsameQ@@#&]],{n,30}] %Y A365925 The positive case is A284640. %Y A365925 The non-strict version is A304792, positive case A276024. %Y A365925 Row sums of A365661, non-strict A365543. %Y A365925 The complement (non-subset-sums) is A365922, non-strict A365918. %Y A365925 A000041 counts integer partitions, strict A000009. %Y A365925 A126796 counts complete partitions, ranks A325781, strict A188431. %Y A365925 A365923 counts partitions by non-subset-sums, strict A365545. %Y A365925 A365924 counts incomplete partitions, ranks A365830, strict A365831. %Y A365925 Cf. A006827, A046663, A364272, A364350, A365658, A365663, A365921. %K A365925 nonn %O A365925 0,2 %A A365925 _Gus Wiseman_, Sep 26 2023