cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365933 a(n) is the period of the remainders when repdigits are divided by n.

This page as a plain text file.
%I A365933 #74 Jan 23 2024 13:25:27
%S A365933 1,9,27,9,9,27,54,9,81,9,18,27,54,54,27,9,144,81,162,9,54,18,198,27,9,
%T A365933 54,243,54,252,27,135,9,54,144,54,81,27,162,54,9,45,54,189,18,81,198,
%U A365933 414,27,378,9,432,54,117,243,18,54,162,252,522,27,540,135,162,9,54
%N A365933 a(n) is the period of the remainders when repdigits are divided by n.
%C A365933 For n>1: Periods are divisible by 9 (= a full cycle in the sequence of repdigits). a(n)/9 is the period of the remainders when repunits are divided by n. So the digit part of the repdigits has no effect on periods generally. For most n the beginning of the periodic part is always A010785(1). If n is a term of A083118 the periodic part starts later after some initial remainders that do not repeat.
%H A365933 Karl-Heinz Hofmann, <a href="/A365933/a365933_3.txt">Table with additional information</a>.
%e A365933 For n = 6:                Remainders of A010785(1..54) mod n.
%e A365933 A010785( 1...9) mod n:      [1, 2, 3, 4, 5, 0, 1, 2, 3]
%e A365933 A010785(10..18) mod n:      [5, 4, 3, 2, 1, 0, 5, 4, 3]
%e A365933 A010785(19..27) mod n:      [3, 0, 3, 0, 3, 0, 3, 0, 3]
%e A365933 So the period is 3*9 = 27. Thus a(n) = 27. And the pattern seen above starts again:
%e A365933 A010785(28..36) mod n:      [1, 2, 3, 4, 5, 0, 1, 2, 3]
%e A365933 A010785(37..45) mod n:      [5, 4, 3, 2, 1, 0, 5, 4, 3]
%e A365933 A010785(46..54) mod n:      [3, 0, 3, 0, 3, 0, 3, 0, 3]
%o A365933 (Python)
%o A365933 def A365933(n):
%o A365933     if n == 1: return 1
%o A365933     remainders, exponent = [], 1
%o A365933     while (rem:=(10**exponent // 9 % n)) not in remainders:
%o A365933         remainders.append(rem); exponent += 1
%o A365933     return (exponent - remainders.index(rem) - 1) * 9
%o A365933 (Python)
%o A365933 def A365933(n):
%o A365933     if n==1: return 1
%o A365933     a,b,x,y=1,1,1%n,11%n
%o A365933     while x!=y:
%o A365933         if a==b:
%o A365933             a<<=1
%o A365933             x,b=y,0
%o A365933         y = (10*y+1)%n
%o A365933         b+=1
%o A365933     return 9*b # _Chai Wah Wu_, Jan 23 2024
%Y A365933 Cf. A010785, A002275.
%Y A365933 Cf. A305322 (divisor 3), A002279 (divisor 5), A366596 (divisor 7).
%Y A365933 Cf. A083118 (the impossible divisors).
%K A365933 nonn,base
%O A365933 1,2
%A A365933 _Karl-Heinz Hofmann_, Nov 07 2023