This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365959 #15 Jul 31 2025 16:57:26 %S A365959 8,3,5,9,9,8,3,3,2,7,0,0,9,6,4,3,2,2,9,7,0,9,1,1,1,9,8,6,9,6,0,2,9,0, %T A365959 9,6,4,2,7,0,4,2,1,6,8,0,9,3,2,3,3,2,4,8,3,2,9,5,5,6,3,4,9,2,5,7,7,0, %U A365959 1,8,9,5,2,5,3,1,7,3,8,8,4,0,0,2,1,9,2,2,7,6,8,8,7,7,6,6,2,2,3,2,5,7,7,8,5,5 %N A365959 Decimal expansion of Sum_{k>=2} zeta(k)/k^2. %H A365959 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/3696525/on-a-log-gamma-definite-integral">On a log-gamma definite integral</a>, 2020. %H A365959 Michael I. Shamos, <a href="http://euro.ecom.cmu.edu/people/faculty/mshamos/cat.pdf">A catalog of the real numbers</a>, 2011, p. 596. %F A365959 Equals Sum_{k>=1} (polylog(2, 1/k) - 1/k). %F A365959 From _Velin Yanev_, Jul 30 2025: (Start) %F A365959 Equals Integral_{x=0..1} log(Gamma(1 - x))/x dx - A001620. [Proved by Paul Enta, 2020] %F A365959 Conjecture: Equals 2 - A001620 - Pi^2/12 + Integral_{x=0..oo} (2*x*arccot(x) - log(1/x^2 + 1))*log(1 - exp(-2*Pi*x))/(2*Pi*(x^2 + 1)) dx. (End) %e A365959 0.835998332700964322970911198696029096427042168093233248329556349257701895253... %o A365959 (PARI) sumpos(k=2,zeta(k)/k^2) %Y A365959 Cf. A231132, A256921. %K A365959 nonn,cons %O A365959 0,1 %A A365959 _Vaclav Kotesovec_, Sep 23 2023