cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365962 Triangle read by rows: coefficients in expansion of Asveld's polynomials Pi_j(x).

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 48, 30, 9, 1, 312, 192, 60, 12, 1, 2520, 1560, 480, 100, 15, 1, 24480, 15120, 4680, 960, 150, 18, 1, 277200, 171360, 52920, 10920, 1680, 210, 21, 1, 3588480, 2217600, 685440, 141120, 21840, 2688, 280, 24, 1, 52254720, 32296320, 9979200, 2056320, 317520, 39312, 4032, 360, 27, 1
Offset: 0

Views

Author

Mélika Tebni, Sep 23 2023

Keywords

Examples

			Triangle begins:
      1,
      3,     1,
     10,     6,    1,
     48,    30,    9,   1,
    312,   192,   60,  12,   1,
   2520,  1560,  480, 100,  15,  1,
  24480, 15120, 4680, 960, 150, 18, 1,
  ...
		

Crossrefs

Cf. A000045, A005921 (col 0), A005922 (col 1), A039948, A341725.

Programs

  • Maple
    T := proc(n, k) option remember;if k = n then 1  else (n!/k!*combinat[fibonacci](n-k+3)) fi end: seq(print(seq(T(n, k), k = 0..n)), n=0..9);
    # second Maple program:
    T := (n,k) -> add(Stirling2(j, k)*add(Stirling1(n, i)*A341725(i, j), i = j .. n), j = k .. n): seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 9);
  • PARI
    T(n,k) = n!/k!*sum(j=k, n, fibonacci(j-k+1)*binomial(2,n-j)) \\ Winston de Greef, Oct 21 2023
    
  • PARI
    T(n,k) = if(n == k, 1, n!/k!*fibonacci(n-k+3)) \\ Winston de Greef, Oct 21 2023

Formula

E.g.f. of column k: (1+x)^2*x^k / ((1-x-x^2)*k!), k >= 0.
T(n,n) = 1 and T(n,k) = n!/k!*Fibonacci(n-k+3), n > k >= 0.
T(n,k) = n!/k!*Sum_{j=k..n} Fibonacci(j-k+1)*binomial(2,n-j).
T(n,k) = n!/k!*Sum_{j=k..n} (Fibonacci(j-k)+(-1)^(j-k))*binomial(3,n-j).
Recurrence: T(n,0) = A005921(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1.
T(n,k) = Sum_{j=k..n} Stirling2(j,k)*(Sum_{i=j..n} Stirling1(n,i)*A341725(i,j)).
Sum_{j=k..n} (-1)^(n-j)*(n-j+1)!*binomial(n,j)*T(j,k) = A039948(n,k).