This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365964 #36 Mar 06 2025 08:28:13 %S A365964 0,1,4,8,20,33,52,78,108,156,212,264,340,425,528,640,780,925,1084, %T A365964 1255,1428,1664,1916,2183,2474,2769,3116,3464,3852,4258,4688,5120, %U A365964 5680,6241,6816,7406,7992,8689,9388,10127,10888,11729,12592,13495,14400,15440,16512 %N A365964 a(n) is n times the minimum moment of inertia of an n-celled polyomino about an axis through the center of mass perpendicular to the plane of the polyomino, with a unit point mass in the center of each of the cells. %C A365964 From _Pontus von Brömssen_, Feb 26 2025: (Start) %C A365964 a(1)-a(40) appear in Brlek, Labelle, and Lacasse (2008). %C A365964 For n = 5, 11, 16, 17, 33, there are two (free) polyominoes with the minimum moment of inertia a(n)/n. For n <= 67, there are never more than two. See linked illustration. %C A365964 (End) %H A365964 Pontus von Brömssen, <a href="/A365964/b365964.txt">Table of n, a(n) for n = 1..67</a> %H A365964 Srečko Brlek, Gilbert Labelle, and Annie Lacasse, <a href="https://doi.org/10.1016/j.tcs.2008.06.015">Discrete sets with minimal moment of inertia</a>, Theoretical Computer Science 406 (2008), 31-42. See Tables 1-2 and Figure 8. %H A365964 Pontus von Brömssen, <a href="/A365964/a365964_1.svg">Illustration of the optimal polyominoes for 1 <= n <= 67, with their centers of mass marked with a dot</a>. %H A365964 Pontus von Brömssen, <a href="https://oeis.org/plot2a?name1=A365964&name2=A000578&tform1=untransformed&tform2=untransformed&shift=0&radiop1=ratio&drawpoints=true">Plot of a(n)/n^3 vs n</a>, using Plot2. %H A365964 <a href="/index/Mo#moment_of_inertia">Index entries for sequences related to moment of inertia</a>. %H A365964 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %F A365964 a(n) ~ n^3/(2*Pi). %e A365964 For some n, there are more than one polyomino that have the minimum possible moment of inertia. For n = 5, for example, both the P-pentomino and the X-pentomino have the minimum possible moment of inertia a(5)/5 = 4; and for n = 11, the two undecominoes below both have the minimum possible moment of inertia a(11)/11 = 212/11. %e A365964 +---+ +---+---+ %e A365964 | | | | | %e A365964 +---+---+---+ +---+---+---+ %e A365964 | | | | | | | | %e A365964 +---+---+---+---+ +---+---+---+---+ %e A365964 | | | | | | | | | | %e A365964 +---+---+---+---+ +---+---+---+---+ %e A365964 | | | | | | | %e A365964 +---+---+---+ +---+---+ %e A365964 Also for n = 16 there are two polyominoes with the minimum moment of inertia a(16)/16 = 40: the 4 X 4 square and the 5 X 4 square with the corner cells removed. - _Pontus von Brömssen_, Apr 03 2024 %Y A365964 Row minima of A365963. %Y A365964 Cf. A000578. %K A365964 nonn %O A365964 1,3 %A A365964 _Pontus von Brömssen_, Sep 23 2023 %E A365964 a(14)-a(16) from _Pontus von Brömssen_, Apr 03 2024 %E A365964 More terms from _Pontus von Brömssen_, Feb 26 2025