This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365968 #25 Oct 18 2024 14:46:33 %S A365968 0,-1,1,-3,-1,1,3,-6,-4,-2,0,0,2,4,6,-10,-8,-6,-4,-4,-2,0,2,-2,0,2,4, %T A365968 4,6,8,10,-15,-13,-11,-9,-9,-7,-5,-3,-7,-5,-3,-1,-1,1,3,5,-5,-3,-1,1, %U A365968 1,3,5,7,3,5,7,9,9,11,13,15,-21,-19,-17,-15,-15,-13,-11,-9 %N A365968 Irregular triangle read by rows: T(n,k) (0 <= n, 0 <= k < 2^n). An infinite binary tree with root node 0 in row n = 0. Each node then has left child (2*j) - k - 1 and right child (2*j) - k + 1, where j and k are the values of the parent and grandparent nodes respectively. %C A365968 For n in A014601 row n will contain all even numbers from 0 to A000217(n). %C A365968 For n in A042963 row n will contain all odd numbers from 1 to A000217(n). %H A365968 John Tyler Rascoe, <a href="/A365968/b365968.txt">Rows n = 0..12, flattened</a> %F A365968 T(n,k) = - Sum_{i=0..n-1} (i+1)*(-1)^b[i] where the binary expansion of k is k = Sum_{i=0..n-1} b[i]*2^i. - _Kevin Ryde_, Nov 14 2023 %e A365968 Triangle begins: %e A365968 k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A365968 n=0: 0; %e A365968 n=1: -1, 1; %e A365968 n=2: -3, -1, 1, 3; %e A365968 n=3: -6, -4, -2, 0, 0, 2, 4, 6; %e A365968 n=4: -10, -8, -6, -4, -4, -2, 0, 2, -2, 0, 2, 4, 4, 6, 8, 10; %e A365968 ... %e A365968 The binary tree starts with root 0 in row n = 0. For rows n < 2, k = 0. %e A365968 In row n = 3, the parent node -3 has left child -6 = 2*(-3) - (-1) - 1. %e A365968 The tree begins: %e A365968 row %e A365968 [n] %e A365968 [0] ______0______ %e A365968 / \ %e A365968 [1] __-1__ __1__ %e A365968 / \ / \ %e A365968 [2] -3 -1 1 3 %e A365968 / \ / \ / \ / \ %e A365968 [3] -6 -4 -2 0 0 2 4 6 %e A365968 . %o A365968 (Python) %o A365968 def A365968(n, k): %o A365968 b, x = bin(k)[2:].zfill(n), 0 %o A365968 for i in range(0, n): %o A365968 x += (-1)**(int(b[n-(i+1)])+1)*(i+1) %o A365968 return(x) # _John Tyler Rascoe_, Nov 12 2023 %o A365968 (PARI) T(n,k) = sum(i=0,n-1, if(bittest(k,i), i+1, -(i+1))); \\ _Kevin Ryde_, Nov 14 2023 %Y A365968 Cf. A004718, A274575, A360173, A363718. %K A365968 sign,tabf,look,easy %O A365968 0,4 %A A365968 _John Tyler Rascoe_, Sep 23 2023