This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365988 #52 Jan 24 2025 08:41:35 %S A365988 1,7,197,22193,10056959,18287614751,133267613878665, %T A365988 3888492110032890000,454016084146596000000000, %U A365988 212041997127527000000000000000,396017759826921000000000000000000000 %N A365988 Number of n X n binary arrays with a path of adjacent 1's from top row to bottom row. %C A365988 a(n) is the number of climbable arrangements that exist for sets of n adjacent "broken ladders" with height n, where a broken ladder is an array of n steps with some number of the steps unusable, the rest usable; an arrangement is the configuration of the locations of the broken rung(s) on the n ladders of height n; and a climbable arrangement is a set of ladders such that with movement up, down, left, and right, there exists a path from the bottom to the top. %C A365988 Also, a(n) is the sum of the coefficients of exact spanning probabilities in 2d lattices along the second dimension for an n X n square lattice. %D A365988 Samuel Dittmer, Hiram Golze, Grant Molnar, and Caleb Stanford, Puzzle and Proof: A Decade of Problems from the Utah Math Olympiad, CRC Press, 2025, p. 51. %H A365988 Stephan Mertens, <a href="https://wasd.urz.uni-magdeburg.de/mertens/research/percolation/">Percolation</a>. %H A365988 Jeremy Rebenstock, <a href="/A365988/a365988.ipynb.txt">Python notebook for calculating and visualizing a(n)</a>. %H A365988 Jeremy Rebenstock and Thomas Ladouceur, <a href="/A365988/a365988.png">Illustration for a(2) = 7</a>. %H A365988 R. M. Ziff and M. E. J. Newman, <a href="https://arxiv.org/abs/cond-mat/0203496">Convergence of threshold estimates for two-dimensional percolation</a>, arXiv:cond-mat/0203496 [cond-mat.stat-mech], 2002. %F A365988 Upper limit: a(n) <= 2^(n^2). This is the total number of boards possible. %F A365988 Lower limit: a(n) >= 2^(n-1)*a(n-1) climbable paths (board before it, with a completely unbroken ladder) and we break any arrangement of rungs on the new ladder. %e A365988 x indicates a broken rung, - a functional rung. %e A365988 . %e A365988 |-| |-| |x| |-| |-| |x| |-| |-| %e A365988 |-| |-| (1) |-| |-| (2) |-| |-| (3) |-| |x| (4) %e A365988 . %e A365988 |-| |-| |x| |-| |-| |x| |-| |-| %e A365988 |x| |-| (5) |x| |-| (6) |-| |x| (7) |x| |x| (8) %e A365988 . %e A365988 |x| |x| |x| |-| |-| |x| |x| |x| %e A365988 |-| |-| (9) |-| |x| (10) |x| |-| (11) |-| |x| (12) %e A365988 . %e A365988 |x| |x| |x| |-| |-| |x| |x| |x| %e A365988 |x| |-| (13) |x| |x| (14) |x| |x| (15) |x| |x| (16) %e A365988 . %e A365988 The only climbable configurations are 1-7 since there is a path to the top from the bottom. So a(2) = 7. %o A365988 (Python) # See Rebenstock link. %Y A365988 Main diagonal of A359576. %Y A365988 Cf. A069343, A163028. %K A365988 nonn,walk %O A365988 1,2 %A A365988 _Jeremy Rebenstock_ and _Thomas Ladouceur_, Sep 24 2023