cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366011 G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} prime(k) * A(x)^k.

This page as a plain text file.
%I A366011 #7 Feb 16 2025 08:34:06
%S A366011 1,-3,13,-67,379,-2267,14065,-89515,580379,-3815731,25356051,
%T A366011 -169898467,1145825123,-7767073859,52858784539,-360823702851,
%U A366011 2468606626813,-16915880702563,116028193869805,-796200367684945,5463239318586601,-37465765826805457,256664142145450777,-1755608165010431139
%N A366011 G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} prime(k) * A(x)^k.
%C A366011 Reversion of g.f. for odd prime numbers together with 1.
%H A366011 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a>
%t A366011 nmax = 24; A[_] = 0; Do[A[x_] = x - Sum[Prime[k] A[x]^k, {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
%t A366011 nmax = 24; CoefficientList[InverseSeries[Series[x + Sum[Prime[k] x^k, {k, 2, nmax}], {x, 0, nmax}], x], x] // Rest
%Y A366011 Cf. A006005, A007296.
%K A366011 sign
%O A366011 1,2
%A A366011 _Ilya Gutkovskiy_, Sep 25 2023