This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366017 #7 Feb 16 2025 08:34:06 %S A366017 0,1,9,132,2365,47169,1005564,22431720,517122117,12222124035, %T A366017 294569159313,7212098118888,178877944712844,4484938858752940, %U A366017 113488477622130600,2894560146756466320,74335973069605120725,1920587845828953301479,49886703842977713177723,1301959618949870922531300,34123873581608909988904245 %N A366017 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 5 * A(x)). %C A366017 Reversion of g.f. for octagonal pyramidal numbers (with signs). %H A366017 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a> %F A366017 a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * 5^k for n > 0. %t A366017 nmax = 20; A[_] = 0; Do[A[x_] = x (1 + A[x])^4/(1 - 5 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] %t A366017 CoefficientList[InverseSeries[Series[x (1 - 5 x)/(1 + x)^4, {x, 0, 20}], x], x] %t A366017 Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 5^k, {k, 0, n - 1}], {n, 1, 20}]] %Y A366017 Cf. A002293, A002414, A064089, A365754, A365818, A366014, A366015, A366016. %K A366017 nonn %O A366017 0,3 %A A366017 _Ilya Gutkovskiy_, Sep 26 2023