cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366022 Decimal expansion of a constant related to the asymptotics of A109085.

Original entry on oeis.org

4, 8, 9, 6, 3, 5, 2, 2, 6, 6, 8, 4, 3, 0, 3, 3, 7, 3, 0, 8, 1, 5, 4, 1, 6, 6, 0, 5, 7, 8, 4, 6, 8, 6, 1, 9, 3, 2, 2, 4, 1, 6, 6, 2, 5, 1, 0, 1, 1, 5, 8, 7, 8, 4, 5, 4, 9, 4, 0, 6, 7, 2, 9, 9, 7, 0, 5, 7, 5, 8, 4, 1, 5, 7, 1, 4, 0, 1, 6, 8, 3, 2, 8, 8, 7, 0, 5, 2, 2, 9, 0, 1, 9, 6, 3, 9, 3, 8, 9, 9, 1, 7, 3, 2, 7, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 26 2023

Keywords

Examples

			0.489635226684303373081541660578468619322416625...
		

Crossrefs

Programs

  • Mathematica
    val = -s*Log[r*s] / Sqrt[2*Pi*((-2 - 3*Log[r*s] + 2*Log[1 - r*s])* QPolyGamma[0, 1, r*s] + QPolyGamma[0, 1, r*s]^2 - 4*ArcTanh[1 - 2*r*s]*(Log[r*s] - Log[1 - r*s]/2 - r*(s/(1 - r*s))) - 2*(Log[1 - r*s]/(1 - r*s)) - QPolyGamma[1, 1, r*s] + r*s*Log[r* s]*((-r)*s^2*Log[r*s]* Derivative[0, 2][QPochhammer][r*s, r*s] + 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s]))] /. FindRoot[{s == 1/QPochhammer[r*s], 1/s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/(s* Log[r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 1000]; RealDigits[Chop[val], 10, -Floor[Log[10, Abs[Im[val]]]] - 3][[1]]

Formula

Equals limit_{n->infinity} A109085(n) * n^(3/2) / A270915^n.