A366027 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, if 2^(d-1) appears in the binary expansion of a(n) then d divides n.
1, 2, 4, 3, 16, 5, 64, 8, 256, 17, 1024, 6, 4096, 65, 20, 9, 65536, 7, 262144, 10, 68, 1025, 4194304, 11, 16777216, 4097, 257, 66, 268435456, 18, 1073741824, 128, 1028, 65537, 80, 12, 68719476736, 262145, 4100, 19, 1099511627776, 32, 4398046511104, 1026, 21
Offset: 1
Examples
The first terms, alongside their binary expansion and the corresponding divisors d, are: n a(n) bin(a(n)) Corresponding divisors -- ------ ------------------- ---------------------- 1 1 1 {1} 2 2 10 {2} 3 4 100 {3} 4 3 11 {2, 1} 5 16 10000 {5} 6 5 101 {3, 1} 7 64 1000000 {7} 8 8 1000 {4} 9 256 100000000 {9} 10 17 10001 {5, 1} 11 1024 10000000000 {11} 12 6 110 {3, 2} 13 4096 1000000000000 {13} 14 65 1000001 {7, 1} 15 20 10100 {5, 3} 16 9 1001 {4, 1} 17 65536 10000000000000000 {17} 18 7 111 {3, 2, 1}
Links
Programs
-
PARI
See Links section.
Formula
a(p) = 2^(p-1) for any prime number p.
a(2*p) = 2^(p-1) + 1 for any prime number p.
Comments