This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366031 #11 Oct 08 2023 09:00:27 %S A366031 0,1,2,4,8,16,10,17,32,64,48,68,128,256,9,192,512,257,34,20,1024,768, %T A366031 1056,6,144,2048,4096,8192,3072,4224,520,8193,16384,320,32768,36, %U A366031 12288,16640,1088,2052,32896,544,65536,131072,262144,49152,67584,135168,262152,258,524288,1048576,1536,8256,2097152 %N A366031 Square array A(n, k), n, k >= 0, read and filled by upwards antidiagonals the greedy way with distinct nonnegative integers such that the binary expansions of any two distinct terms in the same row or column or antidiagonal have no common 1's. %C A366031 This sequence is a variant of A366030; here we avoid common 1's in binary expansions, there common prime factors. %C A366031 All the powers of 2 appear in the sequence, in ascending order. %C A366031 For any k >= 0, the first term of the sequence whose binary expansion contains 2^k is 2^k. %C A366031 Will every nonnegative integer appear in the sequence? %H A366031 Rémy Sigrist, <a href="/A366031/a366031.png">Colored representation of the array for n, k <= 673</a> (grayish pixels correspond to powers of 2) %H A366031 Rémy Sigrist, <a href="/A366031/a366031.gp.txt">PARI program</a> %e A366031 Array A(n, k) begins: %e A366031 n\k| 1 2 3 4 5 6 7 8 %e A366031 ---+----------------------------------------------------------------- %e A366031 1| 0 2 16 64 9 1024 8192 36 %e A366031 2| 1 8 32 256 20 4096 32768 131072 %e A366031 3| 4 17 128 34 2048 320 65536 1536 %e A366031 4| 10 68 257 144 16384 544 1048576 6144 %e A366031 5| 48 512 6 8193 32896 524288 72 4194560 %e A366031 6| 192 1056 520 2052 258 2097153 20480 32784 %e A366031 7| 768 4224 1088 262152 1048608 18 2049 67117056 %e A366031 8| 3072 16640 135168 33280 65600 12 50 129 %o A366031 (PARI) See Links section. %Y A366031 Cf. A366030. %K A366031 nonn,base,tabl %O A366031 0,3 %A A366031 _Rémy Sigrist_, Sep 26 2023