This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366032 #33 Oct 22 2023 15:58:25 %S A366032 2,4,2,10,6,10,6,6,12,16,16,16,8,12,10,30,20,26,34,20,28,18,26,30,36, %T A366032 24,28,26,30,88,54,68,44,64,46,46,48,40,36,52,32,64,46,66,36,66,94,72, %U A366032 66,76,60,54,56,70,58,66,74,72,76,56,84,80,88,70,92,104,78,86,100,84,66,86,84,86,96 %N A366032 Difference d between the least odd integer that would disprove Gilbreath's conjecture and prime(n). %C A366032 In Gilbreath's conjecture the leading row lists the primes. In this sequence we take as leading row the first n-1 primes joined with the least odd integer k that disproves Gilbreath's conjecture instead of prime(n). %C A366032 The terms of the sequence are the difference of this hypothetical number k and prime(n). %C A366032 k is always greater than prime(n-1). The first 1000 terms show that k is greater than prime(n). %C A366032 Although the first 1000 terms are positive, in theory a term can be negative: prime(n-1) < k < prime(n). %C A366032 If we find a term that is zero then k = prime(n) and that would disprove the conjecture. %e A366032 The first term of the sequence is a(3) = 2 (offset is 3) %e A366032 We start with the first 2 primes and instead of the third prime, we choose k=7. %e A366032 2,3 --> 2,3,7 instead of 2,3,5 %e A366032 1 1,4 1,2 %e A366032 3 1 %e A366032 . %e A366032 k=7 is the least odd integer that disproves the conjecture. So, a(3) = k-prime(3) = 7 - 5 = 2. %e A366032 . %e A366032 2,3,5,7,11 --> 2,3,5,7,11,23 instead of 2,3,5,7,11,13 %e A366032 1,2,2,4 1,2,2,4,12 1,2,2,4,2 %e A366032 1,0,2 1,0,2,8 1,0,2,2 %e A366032 1,2 1,2,6 1,2,0 %e A366032 1 1,4 1,2 %e A366032 3 1 %e A366032 k=23 is the least odd integer that disproves the conjecture. So, a(6) = k-prime(6) = 23 - 13 = 10. %t A366032 Table[(k=Prime@n;While[Nest[Abs@*Differences,Join[Prime@Range@n,{k}],n]=={1},k=k+2];k)-NextPrime@Prime@n,{n,2,100}] %o A366032 (PARI) isok(v) = my(nb=#v); for (i=1, nb-1, v = vector(#v-1, k, abs(v[k+1]-v[k]));); v[1] == 1; %o A366032 a(n) = my(v = primes(n-1), k=prime(n)); while (isok(concat(v, k)), k+=2); k - prime(n); \\ _Michel Marcus_, Sep 28 2023 %Y A366032 Cf. A036262, A363003. %K A366032 nonn %O A366032 3,1 %A A366032 _Giorgos Kalogeropoulos_, Sep 27 2023